another two years filled with many activities in different fields and enriched with fruitful national and world wide cooperation have passed since the ITO staff reported in 2011 about their current research activities. Thus it is again time to inform our partners, sponsors and customers about our recent advances in the field of Applied Optics.

The basic understanding that determines our work remains unchanged: striving for excellence in research and teaching, together with a good balance of continuity and systematic renewing. Ongoing activities are directed at both the profound investigation of our strategic research topics such as multi-scale sensor fusion, computational microscopy, resolution enhancement, model-based reconstruction, asphere and freeform metrology, hybrid optics, digital holography, and optical systems design, and the modernization of our infrastructure. Meanwhile the operation of our reactive ion etching facility has reached the routine level and the Helios Nanolab 600 has been proven as stable and reliable tool for different processing and inspection tasks in the nano world. Our aim to assure flexible structuring technologies with high resolution and reliability not only for a few crucial experiments but for making dedicated optical components is on a good way.

To ensure that ITO can fulfill its mission under changing boundary conditions, we have founded in 2008 the cooperative network SCoPE at the Stuttgart University. The impact of SCoPE is continuously improving and shows encouraging results in the aimed fields: research, teaching and technology transfer. One of the main objectives is the extension of the curriculum in the field of photonic technologies. With the installation of the joint master course in Photonic Engineering, this ambitious goal could be achieved in spring 2013. Scientists from 3 different faculties – physics, electrical engineering and mechanical engineering – are teaching together now the state of the art in Photonics. A continuous increase in students can be observed as a welcome trend. Furthermore, several joint research projects are on the way
and the cooperation with our industrial partners is progressing in various fields of common interest.

As a member of the Faculty of Mechanical Engineering, the Institute represents the University of Stuttgart in the field of Applied Optics in research and education. Together with our national and international partners, our research work focuses on the exploration of new optical measurement, imaging and design principles and their implementation in new components, sensors and sensor systems. One of our long-term central goals is the extension of existing limits by combining modelling, simulation and experimental data acquisition in the context of actively driven measurement processes. Several ambitious objectives are still on our agenda such as the implementation of a multi-sensor measurement systems where the systematic cooperation of different classes of sensors is controlled by a sophisticated assistance system, the implementation of our new software system ITOM that helps us to improve the software development for our setups considerably, the completion of the prototype of our new tilted wavefront interferometer with the goal of market launch in 2014, and the further improvement of our model-based strategies for the solution of different kind of identification problems in optical imaging and metrology.

Our overall research approach “Optical Metrology and Systems Design” is structured into ten main research directions:

- Active Metrology,
- Model-based Metrology,
- Remote Metrology,
- Resolution Enhanced Technologies,
- Computational Imaging,
- Sensor Fusion,
- Sensor Integration,
- Hybrid Optics,
- Simulation, and
- Optical Systems Design.

The strong interaction between these directions gives the Institute the required depth across the broad range of our activities in optics. The considerable number of research projects that are referred to in this report reflects again the success of this approach.

Besides our wide research activities, an ongoing strong commitment of ITO is directed to high-quality teaching on different levels (bachelor, master, PhD). Our consecutive bachelor-master course in medical technology – a joint and challenging project of the University of Stuttgart and the Eberhard Karls Universität Tübingen – is running very successful and enters now the master level. Since the beginning in 2010, ITO is one of the drivers of that course. In 2011 we started a new master course with the dedication “Mechanical Engineering – Micro, Precision and Optical Engineering M.Sc.” and in spring 2013 the mentioned master course “Photonic Engineering M.Sc.” has been implemented.

To cope with our ambitious and extensive approach to Applied Optics, a deep understanding of physics needs to be combined with practical engineering implementation. This is a daily challenge for all members of the staff. However, a good mixture of graduates in physics and engineering, a vital and innovative scientific climate, that considers the interdisciplinary cooperation with numerous national and international institutes, and a continuous observation of the technological and scientific progress are a good basis to meet these and future challenges.

Stuttgart, July 2013

Wolfgang Osten

1 Stuttgart Research Center of Photonic Engineering, http://www.scope.uni-stuttgart.de/
Index

Institute structure

Team and structure ..10
Staff of the Institute ...12
Project partners ..16
Studying optics ...17
The research groups ..19

Research projects

3D-Surface Metrology

Active inspection of three-dimensional objects using a multi-sensor measurement system ... 24
M. Gronle, W. Lyda, A. Buila, T. Haist, W. Osten

Advanced signal evaluation and line sensors for chromatic confocal spectral interferometry (CCSI/LCSI) ... 27
T. Boettcher, M. Gronle, W. Lyda, W. Osten

Design and fabrication of a hybrid hyper-chromatic lens for confocal sensors 29
W. Lyda, F. Schaal, C. Pruß, W. Osten

GPU accelerated ray tracing ..30
F. Mauch, M. Gronle, W. Lyda, W. Osten

Model based characterization of confocal measurement systems31
F. Mauch, W. Lyda, W. Osten

Optical low-cost sensor system for the control of pump rates 32
K. Körner, W. Lyda, W. Osten

iton – measurement and laboratory automation software .. 33
M. Gronle, C. Kohler, M. Wilke, W. Lyda, H. Bieger, W. Osten

Vertically integrated array-type mirau-based OCT system for early diagnostics of skin cancer (VIAMOS) .. 34
W. Lyda, T. Boettcher, J. Krauter, W. Osten

In-situ surface metrology: Integration of a white light interferometer into a high precision grinding machine for diamond tools 35
W. Lyda, R. Berger, D. Fleischle, W. Osten

Active Optical Systems and Computational Imaging

SLM-based vibrometry ... 38
T. Haist, C. Lingel, M. Warber, W. Osten
Optimizing the diffraction efficiency of SLMs:
Jones matrix simulation model and time dependent variations ... 40
C. Lingel, M. Hasler, T. Haist, W. Osten

Fast detection of wavefront disturbance:
Holographic modal wavefront sensor ... 41
S. Dong, T. Haist, W. Osten

Programmable microscopy ... 42
M. Hasler, M. Warber, T. Haist

A systematic method for the description of optical inspection tasks .. 44
V. Erdogan, W. Osten

High Resolution Metrology and Simulation

Influence of line edge roughness on scatter signatures for CD-metrology 46
B. Bilski, K. Frenner, W. Osten

Model-based reconstruction of periodic sub-wavelength structures
by white light interference Fourier scatterometry ... 47
V. Ferreras Paz, S. Peterhäuser, K. Frenner, W. Osten

Design of microlenses using plasmonic stacks ... 49
L. Fu, K. Frenner, W. Osten

Improved speckle simulator for rough surfaces
using surface integral equations .. 50
L. Fu, K. Frenner, W. Osten

Reconstruction of dynamical perturbations in optical systems ... 51
H. Gilbergs, K. Frenner

Sub-wavelength imaging with metallic meander structures ... 52
P. Schau, L. Fu, K. Frenner, H. Schweizer, H. Giessen, W. Osten

Polarization scrambling with plasmonic
meander-type metamaterials for space applications .. 54
P. Schau, L. Fu, K. Frenner, H. Schweizer, H. Giessen, W. Osten

Depth-sensitive fluorescence measurements for diagnostic investigations 55
P. Schau, K. Frenner, W. Osten

Interferometry and Diffractive Optics

The Tilted Wave Interferometer (TWI):
A quick and flexible approach to measure asphere and freeform surfaces 58
G. Baer, C. Prüß, J. Schindler, W. Osten
Micro optical spatial polarization control ... 60
F. Schaal, C. Pruß, W. Osten

Fabrication of computer generated holograms on rotationally symmetric curved substrates ... 61
M. Häfner, C. Pruß, W. Osten

Cost effective production of diffractive multi-level elements .. 63
F. Schaal, C. Pruß, W. Osten

Fabrication of diffractive and micro-optical elements for external partners 64
F. Schaal, C. Pruß, W. Osten

Phase errors introduced in CGH by rigorous effects ... 65
S. Peterhänsel, C. Pruß, W. Osten

Coherent Metrology

Optical methods for assessment of transport and age induced damages on artworks .. 68
M. Morawitz, I. Alexeenko, M. Wilke, G. Pedrini, W. Osten

High resolution 3D microscopy using opposed-view dark-field digital holography 69
A. Faridian, G. Pedrini, W. Osten

3D UV holographic microscope for biomedical imaging .. 72
A. K. Singh, A. Faridian, G. Pedrini, W. Osten

Knowledge management in virtual labs and remote experiments 73
M. Wilke, M. Riedel, G. Situ, I. Alekseenko, G. Pedrini, W. Osten

Compression of digital holograms .. 75
M. Wilke, G. Pedrini

Nanometric in-plane displacement measurement using phase singularities 76
A. K. Singh, G. Pedrini, W. Osten

Short temporal coherence digital holography with a femtosecond frequency comb laser for optical sectioning ... 77
K. Körner, G. Pedrini, I. Alexeenko, W. Osten

Holographic recording of incoherently illuminated or self-luminous objects 78
D.N. Naik, G. Pedrini, W. Osten

Phase retrieval with resolution enhancement by using random-phase illumination..... 79
P. Gao, G. Pedrini, W. Osten

Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy ... 80
P. Gao, G. Pedrini, W. Osten
Optical Design and Simulation

Application of complex surfaces in modern optical design .. 82
A. Herkommer, C. Pruß, R. Reichle

Phase space methods in geometrical optics ... 84
D. Rausch, A.M. Herkommer

Hybrid endoscopic zoom system with integrated tomographic sensor 85
S. Thiele, A. Herkommer

Publications 2011 - 2012

Invited lectures on international conferences .. 86
Awards .. 87
Editorial work .. 87
Reviewed papers, books and book chapters .. 88
Conference proceedings and journals .. 92
Patents ... 96

Colloquia & Conferences

Optik-Kolloquium 2011 .. 100
Optik-Kolloquium 2012 ... 101
Optik-Kolloquium 2013 ... 102
Organized international conferences: 2011 - 2012 .. 103
Team and structure
Staff of the Institute

Status quo: May 2013

Director
Prof. Dr. Wolfgang Osten +49 (0) 711 685-66075 osten@ito.uni-stuttgart.de

Professorship for Optical Design and Simulation
Prof. Dr. Alois Herkommer +49 (0) 711 685-69871 herkommer@ito.uni-stuttgart.de

Emeritus
Prof. Dr. Hans Tiziani +49 (0) 711 685-66077 tiziani@ito.uni-stuttgart.de

Administration and Secretary
Katja Costantino +49 (0) 711 685-69873 costantino@ito.uni-stuttgart.de
Christina Hübl +49 (0) 711 685-66074 huebl@ito.uni-stuttgart.de
Christa Wolf left on 31.12.2012

Studys
Katharina Bosse-Mettler +49 (0) 711 685-69884 bosse@ito.uni-stuttgart.de
Erich Steinbeißer +49 (0) 711 685-66068 steinbeisser@ito.uni-stuttgart.de

Scope
Margarita Riedel +49 (0) 711 685-69893 riedel@ito.uni-stuttgart.de

Research Assistants
3D-Surface metrology
Wolfram Lyda (leader) +49 (0) 711 685-66594 lyda@ito.uni-stuttgart.de
Dr. David Baureis +49 (0) 711 685-66650 baureis@ito.uni-stuttgart.de
Tobias Boettcher +49 (0) 711 685-66656 boettcher@ito.uni-stuttgart.de
Dr. David Fleischle +49 (0) 711 685-69892 fleischle@ito.uni-stuttgart.de
Marc Gronle +49 (0) 711 685-69888 gronle@ito.uni-stuttgart.de
Dr. Christian Kohler +49 (0) 711 685-66569 kohler@ito.uni-stuttgart.de
Dr. Klaus Körner +49 (0) 711 685-66082 koerner@ito.uni-stuttgart.de
Johann Krauter +49 (0) 711 685-69806 krauter@ito.uni-stuttgart.de
Florian Mauch +49 (0) 711 685-66835 mauch@ito.uni-stuttgart.de
Active Optical Systems

Dr. Tobias Haist (leader) .. +49 (0) 711 685-66069 haist@ito.uni-stuttgart.de
Shihao Dong ... +49 (0) 711 685-69879 dong@ito.uni-stuttgart.de
Malte Hasler ... +49 (0) 711 685-69878 hasler@ito.uni-stuttgart.de
Christian Lingel ... +49 (0) 711 685-66071 lingel@ito.uni-stuttgart.de
Michael Warber ... left on 31.03.2011
Avinash Burla ... left on 25.03.2012

High resolution metrology and simulation

Dr. Karsten Frenner (leader) +49 (0) 711 685-66065 frenner@ito.uni-stuttgart.de
Valeriano Ferreras Paz ... +49 (0) 711 685-66553 ferreras@ito.uni-stuttgart.de
Liwei Fu ... +49 (0) 711 685-69833 fu@ito.uni-stuttgart.de
Holger Gilbergs ... +49 (0) 711 685-66623 gilbergs@ito.uni-stuttgart.de
Sandy Peterhänsel .. +49 (0) 711 685-69875 peterhaensel@ito.uni-stuttgart.de
Philipp Schau ... +49 (0) 711 685-69870 schau@ito.uni-stuttgart.de
Bartosz Bilski ... left on 30.09.2012

Interferometry and diffractive optics

Frederik Schaal (leader) ... +49 (0) 711 685-69883 schaal@ito.uni-stuttgart.de
Goran Baer ... +49 (0) 711 685-66029 baer@ito.uni-stuttgart.de
Jan Beneke ... +49 (0) 711 685-69877 beneke@ito.uni-stuttgart.de
Alexander Bielke ... +49 (0) 711 685-69876 bielke@ito.uni-stuttgart.de
Christof Pruß ... +49 (0) 711 685-66066 pruss@ito.uni-stuttgart.de
Johannes Schindler ... +49 (0) 711 685-60488 schindler@ito.uni-stuttgart.de
Thomas Schoder ... +49 (0) 711 685-66064 schoder@ito.uni-stuttgart.de
Jun Ma ... left on 31.03.2011
René Reichle ... left on 30.06.2011
Eugenio Garbusi ... left on 31.08.2011
David Hopp ... left on 30.09.2011
Dominik Flöß ... left on 29.02.2012
Matthias Häfner .. left on 31.01.2013
Coherent metrology

Dr. Giancarlo Pedrini (leader) +49 (0) 711 685-66078 pedrini@ito.uni-stuttgart.de
Dr. Igor Alekseenko +49 (0) 711 685-66073 alekseenko@ito.uni-stuttgart.de
Ahmad Faridian +49 (0) 711 685-69885 faridian@ito.uni-stuttgart.de
Peng Gao +49 (0) 711 685-69073 gao@ito.uni-stuttgart.de
Henning Kästner +49 (0) 711 685-69804 kaestner@ito.uni-stuttgart.de
Michael Morawitz +49 (0) 711 685-66528 morawitz@ito.uni-stuttgart.de
Dinesh Naik +49 (0) 711 685-69078 naik@ito.uni-stuttgart.de
Alok Kumar Singh +49 (0) 711 685-69887 singh@ito.uni-stuttgart.de
Marc Wilke +49 (0) 711 685-66076 wilke@ito.uni-stuttgart.de
Mohammadreza Bahrami left on 15.05.2013

Optical Design and Simulation

Prof. Dr. Alois Herkommer (leader) +49 (0) 711 685-69871 herkommer@ito.uni-stuttgart.de
Denise Rausch +49 (0) 711 685-66648 rausch@ito.uni-stuttgart.de
Simon Thiele +49 (0) 711 685-66609 thiele@ito.uni-stuttgart.de

Software Engineering and Technicians

Heiko Bieger +49 (0) 711 685-66070 bieger@ito.uni-stuttgart.de
Ralph Knoll +49 (0) 711 685-66067 knoll@ito.uni-stuttgart.de
Andreas Lorenz +49 (0) 711 685-66089 lorenz@ito.uni-stuttgart.de

Guest Scientists

Dr. Caojin Yuan * Univ. of Science and Technology Chenggong (China) 12/2009 – 06/2011
Giorgio Pariani Politecnico di Milano (Italy) 10/2010 – 03/2011
Dr. Francisco Salgado-Remacha Universidad Complutense de Madrid (Spain) 04/2011 – 07/2011
Dr. Vani Chanival Parul Inst. of Engineering & Techn., Vadodra (India) 05/2011 – 07/2011
Prof. Benfeng Bai Tsinghua University (China) 02/2012 – 03/2012
Prof. Anand Krishna Asundi Nanyang University (Singapur) 03/2012 – 04/2012
Pavel Pavlicek Palacky University (Czech Republic) 05/2012 – 06/2012
Dr. Dinesh Naik * The University of Electro-Communication (UEC) (Japan) since 06/2012
Prof. Anhu Li Tongji University (China) 07/2012 – 01/2013
Foreign Guests visiting the Institute: 2011 – 2012

Prof. Dr. R. Leach .. NPL, Teddington, UK ... January 2011
Prof. J. Coupland .. Loughborough Univ., UK .. January 2011
Prof. Dr. Min Yuung Kim Kyungpook National University, KoreaFebruary 2011
Dr. R. Völk .. SUSS Microoptics, Neuchatel .. March 2011
Dr. Jiri Novak Czech Technical University in Prague, Czech Republic May 2011
Prof. Dr. W. Coene ASML, Veldhoven, Netherlands May 2011
Prof. Dr. Albertazzi Univ. Florianopolis, Brazil ... May 2011
Prof. Dr. M. Takeda UEC, Chofu, Japan ... May 2011
Prof. Dr. B. Javidi Univ. of Connecticut, Storrs, USA May 2011
Dr. N. Reingand Patent Hatchery, Baltimore, USA May 2011
Dr. C. Gorecki Univ. Besancon, France .. June 2011
Dr. Arun Anand Institute for Plasma Research, Gujarat, India June 2011
Prof. Dr. C. Joenathan Rose-Hulman Inst. of Technology; Terre Haute, USA July 2011
Dr. D. Mansfield Taylor Hobson, Leicecster, UK October 2011
Prof. Dr. F. Mugele Univ. Twente, NL ... November 2011
Prof. Dr. P. Bryanston-Cross Univ. Warwick, UK .. November 2011
Prof. Dr. I. Moreno Univ. Alicante, Spain .. December 2011
Prof. Dr. J. Campos Univ. Barcelona, Spain ... December 2011
Prof. Dr. C. Joenathan Rose-Hulman Inst. of Technology; Terre Haute, USA October 2012
Dr. P. de Groot Zygo, Middlefield, USA .. May 2012
Dr. Arie den Boef ASML Veldhoven, Netherlands June 2012
Prof. Dr. C. Joenathan Rose-Hulman Inst. of Technology; Terre Haute, USA October 2012
Dr. A. Bernal Rose-Hulman Inst. of Technology; Terre Haute, USA October 2012

* Humboldt fellowship ** Humboldt prize-winner and stays at the ITO for altogether one year
Project partners

Project collaboration with the following companies and organisations
(and many others):

ASML Netherlands B.V. ... Veldhoven, Netherlands
Carl Zeiss Microscopy .. Jena
Carl Zeiss AG ... Oberkochen
Carl Zeiss SMT AG .. Oberkochen
Centre Spatial de Liege .. Liege, Belgium
Centre Suisse d’Electronique et de Microtechnique .. Zurich, Switzerland
DermoScan GmbH ... Munich
ESTEC .. Noordwijk, Netherlands
FOS Messtechnik GmbH .. Schacht-Audorf
Fraunhofer ENAS .. Chemnitz
Fraunhofer IOF .. Jena
Fraunhofer IAP .. Potsdam
Holoeye AG ... Berlin
HSG-IMAT .. Stuttgart
ILM ... Ulm
LaVision GmbH ... Göttingen
Mahr OKM GmbH .. Jena
Polytec GmbH ... Waldbronn
Robert Bosch GmbH .. Gerlingen
Shenzhen University .. China
Sick AG ... Waldkirch
Siemens AG .. München
Staatliche Akademie der Bildenden Künste Stuttgart .. Stuttgart
Statice .. Besancon, France
Trumpf GmbH + Co. KG .. Ditzingen
Tsinghua University .. Peking, China
Université de Franche-Comté .. Besancon, France
University of Eastern Finland ... Joensuu, Finland
VTT Technical Research Centre of Finland .. Espoo, Finland
Studying optics

Traditionally our curriculum is primarily directed towards the students in upper-level diplom courses of Mechanical Engineering, Cybernetic Engineering, Mechatronics, and Technology Management. Since the academic year 2011/12 this courses are offered as Master courses and an increasing number of master students is going to join our lectures.

This applies especially for the new master programme “Micro-, Precision- and Optical Engineering” which enjoys great popularity also by students from other universities even from other countries.

Since the academic year 2009/10 we also offer our optics courses within the new bachelor and master program “Medical Engineering”, and since 2012 also within the new master program “Photonic Engineering”. We also welcome students from other courses, such as “Physics” and “Electrical Engineering” and “Information Technology”.

The following list should give you an overview about the lectures given at the ITO. Be aware that not all lectures are suitable for all courses and that the lectures are held in German language.

Core subjects in Master Courses (6 ECTS - Credit Points):

- **Fundamentals of Engineering Optics**
 - Lecture: Prof. Dr. W. Osten
 - Exercise: H. Gilbergs, E. Steinbeißer

- **Optical Measurement Techniques and Procedures**
 - Lecture: Prof. Dr. W. Osten
 - Exercise: Dr. K. Körner, E. Steinbeißer

- **Optical Information Processing**
 - Lecture: Prof. Dr. W. Osten
 - Exercise: Dr. T. Haist, Dr. K. Frenner

- **Fundamentals of Optics**
 - Lecture: Prof. Dr. A. Herkommer
 - Exercise: D. Rausch

- **Optical Systems in Medical Engineering**
 - Lecture: Prof. Dr. A. Herkommer
 - Exercise: D. Rausch
Elective subjects in Master Courses (3 ECTS - Credit Points):

- **Optical Phenomena in Nature and Everyday Life**
 Lecture: Dr. T. Haist

- **Image Processing Systems for Industrial Applications**
 Lecture: Dr. T. Haist, Dr. Ch. Kohler

- **Fundamentals of Colorimetry and Digital Photography**
 Lecture: Dr. K. Lenhardt

- **Polarization Optics and Nanostructured Films**
 Lecture: Dr. K. Frenner

- **Introduction to Optical Design**
 Lecture: Dr. Ch. Menke, Prof. Dr. A. Herkommer

- **Current Topics and Devices in Biomedical Optics**
 Seminar: Prof. Dr. A. Herkommer

Additional studies:

- **project work and thesis within our fields of research**
 (you will find a list of all student project works at the end of this annual report)

- **practical course “Optic-Laboratory”**
 ==> speckle measurement
 ==> digital image processing
 ==> computer aided design of optical systems
 ==> measurement of the spectral power distribution

- **practical course “Optical Measurement Techniques”**
 ==> 3D surface measurement applying fringe projection
 ==> digital holography
 ==> 2D-interferometry and measurement
 ==> quality inspection of photo-objectives with the MTF measuring system

- **common lab for mechanical engineering (APMB)**
The research groups

3D-Surface Metrology

The objective of the group is the analysis and the implementation of new principles for the acquisition of optical 3D-surface data of engineering and biological objects over a wide scale. Our main focus is on the enhancement of the metering capacity by a combination of physical models and optimized system design.

Current research activities are:
- 3D-measurement applying fringe projection and deflectometry (macroscopic and microscopic)
- adaptive techniques using spatial light modulators
- confocal microscopy
- white light interferometry
- spectral interferometry
- sensorfusion and data interpretation strategies

Contact: ofm@ito.uni-stuttgart.de

Active Optical Systems and Computational Imaging

The objective of our work is the development of flexible optical systems in order to enable new applications, especially within the field of scientific and industrial metrology. To achieve this goal, we make use of different modern light modulation technologies and computer-based methods. One focus of our work lies in the application of holographic methods based on liquid crystal displays and micromechanical systems for various applications ranging from optical tweezers to aberration control and testing of aspherical surfaces.

Main research areas:
- active wavefront modulation and sensors
- adaptive optics
- active wavefront sensors
- dynamic holography
- components, algorithms, and strategies
- waveoptical computing
- computational imaging

Contact: aos@ito.uni-stuttgart.de
High Resolution Metrology and Simulation

The goal of this research group is the investigation of the interaction of light with 3d object structures in the micro and nano domain. Along with experimental research, one major aspect is the rigorous modelling and simulation as an integral part of the active metrology process. The analysis of all information channels of the electromagnetic field (intensity, phase, polarisation state of light) allows us to obtain sub-wavelength information about the structure.

Current research areas:
- modelling and rigorous simulation
- computational electromagnetics
- inverse problems
- high resolution microscopy
- scatterometry
- optical metamaterials

Contact: hms@ito.uni-stuttgart.de

Interferometry and Diffractive Optics

The goal of our research activity is to explore new measurement concepts using diffractive optics. One important application is the testing of optical surfaces, in particular, aspheric lenses. For this purpose we design and produce computer generated holograms (CGH). At the same time, we develop flexible measurement techniques for aspheres and freeform surfaces that aim to replace static null correctors. In addition to CGH for interferometry, our in house production facilities allow us to produce diffractive elements and micro-optics for a wide variety of applications such as imaging systems, UV-measurement systems, beam shaping applications and wavefront sensing.

Our research areas include:
- testing of aspheric and freeform surfaces
- design, fabrication and testing of hybrid refractive/diffractive systems
- interferometry and wavefront sensors
- tailored optics for metrology applications
- fabrication of diffractive optics

Contact: ide@ito.uni-stuttgart.de
Coherent Metrology

Our research objective is the analysis and application of methods based on coherent optics for the measurement of 3D-shape and deformation and to determine the material properties of technical objects and biological tissues. Aside from the quantitative measurements of form and deformation, methods for non-destructive material testing are also analysed and applied.

Research areas include:
- digital holography
- pulsed holographic interferometry
- dynamic strain measurements on biological samples
- shape measurement
- wavefront reconstruction
- holographic non-destructive testing
- endoscopy
- remote and virtual laboratories

Contact: kom@ito.uni-stuttgart.de

Optical Design and Simulation

Focus of the group is the classical optical design of imaging and illumination systems, as well as ray-based and wave-optical system simulations. Main research targets are the development of novel tools for simulation and optimization and the design of innovative complex optical systems for industrial or medical purposes.

Current research topics are:
- imaging design
- illumination design
- optical simulations (ray-tracing and wave-optical)
- phase space methods in optical design and simulation
- complex surfaces in optical system design
- design and simulation of hybrid optical systems

Contact: herkommer@ito.uni-stuttgart.de