This picture showsAndreas  Faulhaber

M.Sc.

Andreas Faulhaber

Research Assistant
Institute for Applied Optics
3D-Surface Metrology

Contact

+49 711 685-69888
+49 711 685-66586

Pfaffenwaldring 9
70569 Stuttgart
Germany
Room: 1.255A

Publications:
  1. T. Blascheck and P. Isenberg, “A Replication Study on Glanceable Visualizations: Comparing Different Stimulus Sizes on a Laptop Computer,” 2021.
  2. T. Blascheck and P. Isenberg, “A Replication Study on Glanceable Visualizations: Comparing Different Stimulus Sizes on a Laptop Computer,” 2021.
  3. T. Dieterle et al., “Transport of a Single Cold Ion Immersed in a Bose-Einstein Condensate,” Phys. Rev. Lett., vol. 126, no. 3, Art. no. 3, 2021, doi: 10.1103/PhysRevLett.126.033401.
  4. F. Beirow et al., “Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures,” OSA Continuum, vol. 4, no. 2, Art. no. 2, Feb. 2021, doi: 10.1364/OSAC.414100.
  5. C. Karthaus, H. Behrendt, M. Dazer, and B. Bertsche, “Effektivitätssteigerung eines Prüffelds  zur Fahrbarkeitsmessung durch  statistische Datenanalyse,” ATZ - Automobiltechnische Zeitschrift, vol. 123, no. 1, Art. no. 1, 2021, doi: 10.1007/s35148-020-0629-3.
  6. C. Karthaus, H. Behrendt, M. Dazer, and B. Bertsche, “Effektivitätssteigerung eines Prüffelds  zur Fahrbarkeitsmessung durch  statistische Datenanalyse,” ATZ - Automobiltechnische Zeitschrift, vol. 123, no. 1, Art. no. 1, 2021, doi: 10.1007/s35148-020-0629-3.
  7. I. M. Graz and S. Rosset, “Stretchable electrodes for highly flexible electronics,” Organic Flexible Electronics, pp. 479--500, 2021, doi: 10.1016/b978-0-12-818890-3.00016-3.
  8. M. Guo and T. Pfau, “A new state of matter of quantum droplets,” Frontiers of Physics, vol. 16, no. 3, Art. no. 3, 2020, doi: 10.1007/s11467-020-1035-8.
  9. O. Kunc and F. Fritzen, “Many-scale finite strain computational homogenization via Concentric Interpolation,” International Journal for Numerical Methods in Engineering, vol. 121, no. 21, Art. no. 21, 2020, doi: 10.1002/nme.6454.
  10. L. Giraud, U. Rüde, and L. Stals, “Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101),” Dagstuhl Reports, vol. 10, no. 3, Art. no. 3, 2020, doi: 10.4230/DagRep.10.3.1.
  11. I. Fortmeier et al., “Round robin comparison study on the form measurement of optical freeform surfaces,” Journal of the European Optical Society-Rapid Publications, vol. 16, no. 1, Art. no. 1, 2020, doi: 10.1186/s41476-019-0124-1.
  12. J. Li et al., “Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use,” Light: Science & Applications, vol. 9, no. 1, Art. no. 1, 2020, doi: 10.1038/s41377-020-00365-w.
  13. D. Scheifele, C. Schöll, and H. Lens, “Comparison of grid-forming voltage source converter control concepts with respect to large active power imbalances,” PESS 2020; IEEE Power and Energy Student Summit, 05.-07. Oct 2020, Darmstadt, pp. 9–14, 2020.
  14. K. Wilhelm, O. Alaya, B. Müller, and H. Lens, “A Linearized AC-OPF Framework for Re-dispatch Optimization,” PESS 2020; IEEE Power and Energy Student Summit, 05.-07. Oct 2020, Darmstadt, pp. 106–111, 2020.
  15. S. Hepp et al., “Purcell-enhanced single-photon emission from a strain-tunable quantum dot in a cavity-waveguide device,” Appl. Phys. Lett., vol. 117, no. 25, Art. no. 25, 2020, doi: 10.1063/5.0033213.
  16. M. Wirzberger, J. P. Borst, J. F. Krems, and G. D. Rey, “Memory-related cognitive load effects in an interrupted learning task: A model-based explanation,” Trends in Neuroscience and Education, 2020, doi: 10.1016/j.tine.2020.100139.
  17. J. Köhler, M. A. Müller, and F. Allgöwer, “Periodic optimal control of nonlinear constrained systems using economic model predictive control,” Journal of Process Control, vol. 92, pp. 185--201, Aug. 2020, doi: 10.1016/j.jprocont.2020.06.004.
  18. V. Jayaneththi, K. Aw, and A. McDaid, “Nonlinear displacement control of magnetic material actuators,” Smart Materials and Structures, vol. 29, no. 3, Art. no. 3, 2020, doi: 10.1088/1748-3190/11/6/066005.
  19. P. K. Illenberger, S. Rosset, U. K. Madawala, and I. A. Anderson, “The integrated self priming circuit: an autonomous electrostatic energy harvester with voltage boosting,” IEEE Transactions on Industrial Electronics, pp. 1--1, 2020, doi: 10.1109/tie.2020.3003591.
  20. N. Emamy, P. Litty, T. Klotz, M. Mehl, and O. Röhrle, “POD-DEIM model order reduction for the monodomain reaction-diffusion sub-model of the neuro-muscular system,” IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22--25, 2018, pp. 177--190, 2020, doi: 10.1007/978-3-030-21013-7_13.
  21. N. Mostashiri, J. S. Dhupia, A. W. Verl, and P. Xu, “Disturbance Observer-Based Controller for Mimicking Mandibular Motion and Studying Temporomandibular Joint Reaction Forces by a Chewing Robot,” 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1042--1047, 2020, doi: 10.1109/aim43001.2020.9158891.
  22. M. Mahmoudinezhad, I. A. Anderson, and S. Rosset, “Interdigitated sensor based on a silicone foam for subtle robotic manipulation,” submitted to Macromolecular Rapid Communications, 2020.
  23. M. H. Mahmoudinezhad, I. Anderson, and S. Rosset, Compressible dielectric elastomer sensor for robotic application, vol. 11375. International Society for Optics and Photonics, 2020, p. 1137527.
  24. C. Hinze, M. Wnuk, M. Zürn, A. Lechler, and A. Verl, “Daten-integrierte Simulation: Lokalisierung biegeschlaffer Bauteile durch 3D-Stereovision.” 2020.
  25. M. Wnuk, C. Hinze, A. Lechler, and A. Verl, Kinematic Multibody Model Generation of Deformable Linear Objects from Point Clouds. 2020.
  26. G. le Handsfield et al., “Achilles Subtendon Structure and Behavior As Evidenced from Tendon Imaging and Computational Modeling,” Frontiers in Sports and Active Living, vol. 2, p. 70, 2020, doi: 10.3389/fspor.2020.00070.
  27. J. Köhler, L. Schwenkel, A. Koch, J. Berberich, P. Pauli, and F. Allgöwer, “Robust and optimal predictive control of the COVID-19 outbreak,” Annual reviews in control, 2020.
  28. M. Rosenfelder, J. Köhler, and F. Allgöwer, “Stability and performance in transient average constrained economic MPC without terminal constraints,” Proc.\ 21st IFAC World Congress, 2020.
  29. G. Moretti, S. Rosset, R. Vertechy, I. Anderson, and M. Fontana, “A Review of Dielectric Elastomer Generator Systems,” Advanced Intelligent Systems, p. 2000125, 2020, doi: 10.1002/aisy.202000125.
  30. J. E. Lara Aguayo, N. Paskaranandavadivel, and L. K. Cheng, “HD-EMG Electrode Count and Feature Selection Influence on Pattern-Based Movement Classification Accuracy,” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4787--4790, 2020, doi: 10.1109/embc44109.2020.9175210.
  31. N. Mostashiri, “An In-Vitro Study of the Temporomandibular Reaction Forces through Motion-Capturing and Robotics.” 2020.
  32. J. Köhler, M. A. Müller, and F. Allgöwer, “Implicit solutions to constrained nonlinear output regulation using MPC,” Proc. 59th Annual Conference on Decision and Control (CDC), 2020.
  33. J. Fernandez, A. Dickinson, and P. Hunter, “Population based approaches to computational musculoskeletal modelling,” Biomechanics and Modeling in Mechanobiology, vol. 19, no. 4, Art. no. 4, 2020, doi: 10.1007/s10237-020-01364-x.
  34. M. Wnuk, C. Hinze, M. Zürn, A. Lechler, and A. Verl, “Demonstrator zur Handhabung biegeschlaffer Objekte.” 2020.
  35. B. Schembera, B. Selent, A. Seeland, D. Iglezakis, and U. Stuttgart, Datenmanagement in Infrastrukturen, Prozessen und Lebenszyklen für die Ingenieurwissenschaften : Abschlussbericht des BMBF-Projektes Dipl-Ing. Stuttgart: Universität Stuttgart, 2019.
  36. T. Ludwig and B. Geyer, “Reproduzierbarkeit,” Informatik Spektrum, vol. 42, no. 1, Art. no. 1, 2019, doi: 10.1007/s00287-019-01149-2.
  37. B. Schembera, Forschungsdatenmanagement im Kontext dunkler Daten in den Simulationswissenschaften. Universität Stuttgart, 2019.
  38. J. Schindler, C. Pruss, and W. Osten, “Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry,” Optical Engineering, vol. 58, no. 7, Art. no. 7, 2019, doi: 10.1117/1.OE.58.7.074105.
  39. S. Thiele, C. Pruss, A. M. Herkommer, and H. Giessen, “3D Printed Stacked Diffractive Microlenses,” Optics Express, vol. 27, no. 24, Art. no. 24, 2019, doi: 10.1364/OE.27.035621.
  40. J. Krauter, J. Stark, and W. Osten, “Topography measurement on disguised microelectromechanical systems using short coherence interferometry,” TM-Technisches Messen, vol. 86, no. 6, Art. no. 6, 2019, doi: 10.1515/teme-2019-0018.
  41. B. Maier, N. Emamy, A. Krämer, and M. Mehl, “Highly parallel multi-physics simulation of muscular activation and EMG,” COUPLED VIII: proceedings of the VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering, pp. 610--621, 2019, [Online]. Available: http://hdl.handle.net/2117/190149.
  42. J. Köhler, E. Andina, R. Soloperto, M. A. Müller, and F. Allgöwer, “Linear robust adaptive model predictive control: Computational complexity and conservatism,” Proc.\ 58th IEEE Conf.\ Decision and Control (CDC), pp. 1383--1388, 2019, doi: 10.1109/cdc40024.2019.9028970.
  43. J. Köhler, M. A. Müller, and F. Allgöwer, “Distributed model predictive control—Recursive feasibility under inexact dual optimization,” Automatica, vol. 102, pp. 1--9, 2019, doi: 10.1016/j.automatica.2018.12.037.
  44. A. Cherian Abraham, L. K. Cheng, T. R. Angeli, S. Alighaleh, and N. Paskaranandavadivel, “Dynamic slow-wave interactions in the rabbit small intestine defined using high-resolution mapping,” Neurogastroenterol Motil, vol. 31, no. 9, Art. no. 9, 2019, doi: 10.1111/nmo.13670.
  45. A. Csiszar, F. Weiß, and A. Verl, “Factorial Formulation of Dynamic Models for Robot Arms,” Tagungsband des 4. Kongresses Montage Handhabung Industrieroboter, pp. 269--278, 2019, doi: 10.1007/978-3-662-59317-2_27.
  46. H. Williams et al., “Improvements to and large-scale evaluation of a robotic kiwifruit harvester,” Journal of Field Robotics, vol. 37, no. 2, Art. no. 2, 2019, doi: 10.1002/rob.21890.
  47. O et al., “Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract,” IEEE Rev Biomed Eng, vol. 12, pp. 287–302, 2019, doi: 10.1109/RBME.2018.2867555.
  48. N. Mostashiri, J. Dhupia, and P. Xu, “Redundancy in Parallel Robots: A Case Study of Kinematics of a Redundantly Actuated Parallel Chewing Robot,” Lecture Notes in Mechanical Engineering, pp. 65--78, 2019, doi: 10.1007/978-981-13-8323-6_6.
  49. C.-H. A. Chan, Z. Aghababaie, N. Paskaranandavadivel, L. K. Cheng, and T. R. Angeli, “Methods for Visualization of Gastric Endoscopic Mapping Data From Three-Dimensional, Non-Uniform Electrode Arrays,” 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2222--2225, 2019, doi: 10.1109/embc.2019.8857158.
  50. J. X. Bannwarth, Z. Jeremy Chen, K. A. Stol, B. A. MacDonald, and P. J. Richards, “Aerodynamic Force Modeling of Multirotor Unmanned Aerial Vehicles,” AIAA Journal, vol. 57, no. 3, Art. no. 3, 2019, doi: 10.2514/1.j057165.
  51. A. S. Garrett, T. Pham, D. Loiselle, J.-C. Han, and A. Taberner, “Mechanical loading of isolated cardiac muscle with a real-time computed Windkessel model of the vasculature impedance,” Physiological Reports, vol. 7, no. 17, Art. no. 17, 2019, doi: 10.14814/phy2.14184.
  52. C. A. Chan, Z. Aghababaie, N. Paskaranandavadivel, L. K. Cheng, and T. R. Angeli, “Methods for Visualization of Gastric Endoscopic Mapping Data From Three-Dimensional, Non-Uniform Electrode Arrays,” Conf Proc IEEE Eng Med Biol Soc, vol. 2019, pp. 2222–2225, 2019, doi: 10.1109/EMBC.2019.8857158.
  53. N. Paskaranandavadivel et al., “Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity,” Physiol Meas, vol. 40, no. 2, Art. no. 2, 2019, doi: 10.1088/1361-6579/ab0668.
  54. A. Csiszar and A. Verl, Industrielle Steuerungen. Carl Hanser Verlag München, 2019, pp. 117--124.
  55. J. Köhler, M. A. Müller, and F. Allgöwer, “Nonlinear reference tracking: An economic model predictive control perspective,” IEEE Trans. Autom. Control, vol. 64, pp. 254–269, 2019, doi: 10.1109/tac.2018.2800789.
  56. T. Piumsomboon, A. Dey, B. Ens, G. Lee, and M. Billinghurst, “The Effects of Sharing Awareness Cues in Collaborative Mixed Reality,” Frontiers in Robotics and AI, vol. 6, 2019, doi: 10.3389/frobt.2019.00005.
  57. P. Du, G. O’Grady, N. Paskaranandavadivel, S. Tang, T. Abell, and L. K. Cheng, “High-resolution mapping of hyperglycemia-induced gastric slow wave dysrhythmias,” Journal of neurogastroenterology and motility, vol. 25, no. 2, Art. no. 2, 2019, doi: 10.5056/jnm18192.
  58. P. Du, G. O. Grady, N. Paskaranandavadivel, S. J. Tang, T. Abell, and L. K. Cheng, “High-resolution Mapping of Hyperglycemia-induced Gastric Slow Wave Dysrhythmias,” J Neurogastroenterol Motil, vol. 25, no. 2, Art. no. 2, 2019, doi: 10.5056/jnm18192.
  59. T. Heinemann, O. Riedel, and A. Lechler, “Generating Smooth Trajectories in Local Path Planning for Automated Guided Vehicles in Production,” Procedia Manufacturing, vol. 39, pp. 98--105, 2019, doi: 10.1016/j.promfg.2020.01.233.
  60. H. Han, L. K. Cheng, T. R. Angeli, and N. Paskaranandavadivel, “Detection of Monophasic Slow-wave Activation Phase Using Wavelet Decomposition,” Conf Proc IEEE Eng Med Biol Soc, vol. 2019, pp. 7157–7160, 2019, doi: 10.1109/EMBC.2019.8856736.
  61. D. Iglezakis and B. Schembera, “Anforderungen der Ingenieurwissenschaften an das Forschungsdatenmanagement der Universität Stuttgart - Ergebnisse der Bedarfsanalyse des Projektes DIPL-ING,” o-bib. Das offene Bibliotheksjournal / Herausgeber VDB, p. Bd. 5 Nr. 3 (2018), 2018, doi: 10.5282/O-BIB/2018H3S46-60.
  62. R. Schachtschneider et al., “Interlaboratory comparison measurements of aspheres,” Measurement Science and Technology, vol. 29, no. 5, Art. no. 5, 2018, doi: 10.1088/1361-6501/aaae96.
  63. S. Wolfen, J. Walter, M. Günther, D. F. Haeufle, and S. Schmitt, “Bioinspired pneumatic muscle spring units mimicking the human motion apparatus: benefits for passive motion range and joint stiffness variation in antagonistic setups,” 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1--6, 2018, doi: 10.1109/m2vip.2018.8600913.
  64. M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning an approximate model predictive controller with guarantees,” IEEE Control Systems Letters, vol. 2, no. 3, Art. no. 3, 2018, doi: 10.1109/lcsys.2018.2843682.
  65. C. P. Bradley et al., “Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems,” Frontiers in Physiology, vol. 9, no. 816, Art. no. 816, 2018, doi: 10.3389/fphys.2018.00816.
  66. X. Ji et al., “Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators,” Sensors and Actuators, B: Chemical, vol. 261, pp. 135–143, 2018.
  67. M. Klein et al., “Machines Without Humans -- Post-Robotics,” Proceedings of Robophilosophy 2018 / TRANSOR 2018, pp. 88--92, 2018, doi: 10.3233/978-1-61499-931-7-88.
  68. J. C. Erickson et al., “Intsy: a low-cost, open-source, wireless multi-channel bioamplifier system,” Physiol Meas, vol. 39, no. 3, Art. no. 3, 2018, doi: 10.1088/1361-6579/aaad51.
  69. M. Wnuk, T. Wenger, A. Lechler, and A. Verl, “Nachgiebigkeit ist Einstellungssache,” handling - Automation, Handhabungstechnik und Intralogistik, vol. 9, p. 20, 2018.
  70. A. J. Taberner et al., “A Flowthrough Infusion Calorimeter for Measuring Muscle Energetics: Design and Performance,” IEEE Transactions on Instrumentation and Measurement, pp. 1--10, 2018, doi: 10.1109/tim.2018.2800838.
  71. J. Fernandez, K. Mithraratne, M. Alipour, G. Handsfield, T. Besier, and J. Zhang, “Towards rapid prediction of personalised muscle mechanics: integration with diffusion tensor imaging,” Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1--9, 2018, doi: 10.1080/21681163.2018.1519850.
  72. D. Driess et al., “Learning to Control Redundant Musculoskeletal Systems with Neural Networks and SQP: Exploiting Muscle Properties,” 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6461–6468, 2018, doi: 10.1109/icra.2018.8463160.
  73. K. Wilms, S. Stieglitz, A. Buchholz, R. Vogl, and D. Rudolph, Do Researchers Dream of Research Data Management? 2017.
  74. C. Redecker and Y. Punie, “European Framework for the Digital Competence of Educators: DigCompEdu,” Publications Office of the European Union, 2017, doi: 10.2760/178382 (print) 10.2760/159770 (online).
  75. A. Bielke, C. Pruß, and W. Osten, “Design of a variable diffractive zoom lens for interferometric purposes,” Optical engineering, vol. 56, no. 1, Art. no. 1, 2017, doi: 10.1117/1.OE.56.1.014104.
  76. C. Pruss, G. B. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Optical engineering, vol. 56, no. 11, Art. no. 11, 2017, doi: 10.1117/1.OE.56.11.111713.
  77. A. Gholami, A. Mang, K. Scheufele, C. Davatzikos, M. Mehl, and G. Biros, “A Framework for Scalable Biophysics-based Image Analysis,” Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC17, pp. 1--13, Nov. 2017, doi: 10.1145/3126908.3126930.
  78. A. Csiszar, F. Jaensch, A. Kienzlen, and C. Scheifele, “Machine Learning in Steuerungstechnik und Robotik,” SPS MAGAZIN, vol. 30, no. 12 2017, Art. no. 12 2017, 2017.
  79. G. Handsfield, B. Bolsterlee, J. M. Inouye, R. D. Herbert, T. F. Besier, and J. W. Fernandez, “Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging,” Biomechanics and modeling in mechanobiology, vol. 16, no. 6, Art. no. 6, 2017, doi: 10.1007/s10237-017-0923-5.
  80. P. Du et al., “Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities,” Front Physiol, vol. 8, p. 1136, 2017, doi: 10.3389/fphys.2017.01136.
  81. A. S. Garrett, T. Pham, D. S. Loiselle, J.-C. Han, and A. J. Taberner, “Real-time model-based control of afterload for in vitro cardiac tissue experimentation,” 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1287--1290, 2017, doi: 10.1109/embc.2017.8037067.
  82. V. Y. Wang, J. R. Hussan, H. Yousefi, C. P. Bradley, P. J. Hunter, and M. P. Nash, “Modelling Cardiac Tissue Growth and Remodelling,” in Multiscale Soft Tissue Mechanics and Mechanobiology, Springer Netherlands, 2017, pp. 283--305.
  83. M. Mordhorst, T. Strecker, D. Wirtz, T. Heidlauf, and O. Röhrle, “POD-DEIM reduction of computational EMG models,” Journal of Computational Science, vol. 19, pp. 86--96, 2017, doi: 10.1016/j.jocs.2017.01.009.
  84. G. A. Lee, T. Teo, S. Kim, and M. Billinghurst, “Mixed reality collaboration through sharing a live panorama,” SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, pp. 1--4, 2017, doi: 10.1145/3132787.3139203.
  85. N. Mostashiri, J. Dhupia, A. Verl, and P. Xu, “Roadmap for in-vitro investigation of interaction between food and teeth,” 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1--6, 2017, doi: 10.1109/m2vip.2017.8211443.
  86. C. Datta and B. A. MacDonald, “Architecture of an Extensible Visual Programming Environment for Authoring Behaviour of Personal Service Robots,” 2017, doi: 10.1109/irc.2017.60.
  87. J. Fernandez, K. Mithraratne, M. Alipour, G. Handsfield, T. Besier, and J. Zhang, “Rapid prediction of personalised muscle mechanics: integration with diffusion tensor imaging,” Imaging for Patient-Customized Simulations and Systems for Point-of-Care Ultrasound, pp. 71--77, 2017, doi: 10.1007/978-3-319-67552-7_9.
  88. C. Boanta and A. Csiszar, “Optimal design of a parallel structure used as a haptic interface,” Mechanism and Machine Theory, vol. 116, pp. 69--88, 2017, doi: 10.1016/j.mechmachtheory.2017.05.013.
  89. N. Besse, S. Rosset, J. J. Zarate, and H. Shea, “Flexible Active Skin: Large Reconfigurable Arrays of Individually Addressed Shape Memory Polymer Actuators,” Advanced Materials Technologies, vol. 2, no. 10, Art. no. 10, 2017.
  90. A. M. Smith, D. S. Katz, and K. E. Niemeyer, “Software citation principles,” PeerJ Computer Science, vol. 2, p. e86, 2016, doi: 10.7717/peerj-cs.86.
  91. C.-M. Chang, “Design and Development of a Jointless Assistive Glove.” 2016.
  92. H.-J. Bungartz et al., “preCICE – A fully parallel library for multi-physics surface coupling,” Computers & Fluids, vol. 141, pp. 250–258, 2016, doi: 10.1016/j.compfluid.2016.04.003.
  93. G. Handsfield, L. Slane, and H. Screen, “Nomenclature of the tendon hierarchy: An overview of inconsistent terminology and a proposed size-based naming scheme with terminology for multi-muscle tendons,” Journal of biomechanics, vol. 49, no. 13, Art. no. 13, 2016, doi: 10.1016/j.jbiomech.2016.06.028.
  94. J. Fernandez et al., “Multiscale musculoskeletal modelling, data-model fusion and electromyography-informed modelling,” Interface Focus, vol. 6, no. 2, Art. no. 2, 2016, doi: 10.1098/rsfs.2015.0084.
  95. S. Peterhänsel, C. Pruss, and W. Osten, “Phase Errors in High Line Density CGH Used for Aspheric Testing : Beyond Scalar Approximation,” Optics Express, vol. 21, no. 10, Art. no. 10, 2013, doi: 10.1364/OE.21.011638.
  96. M. Bürger, D. Zelazo, and F. Allgöwer, “Hierarchical Clustering of Dynamical Networks Using a Saddle-Point Analysis,” IEEE Transactions on Automatic Control, vol. 58, no. 1, Art. no. 1, 2013, doi: 10.1109/tac.2012.2206695.
  97. S. Büttner, H.-C. Hobohm, and L. Müller, Eds., Handbuch Forschungsdatenmanagement. Bad Honnef, 2011.
  98. S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit surfaces for shape estimation and grasping,” 2011 IEEE International Conference on Robotics and Automation, pp. 2845--2850, 2011, doi: 10.1109/ICRA.2011.5980395.
  99. P. Mishra and M. J. Koehler, “Technological Pedagogical Content Knowledge: A new Framework for Teacher Knowledge,” Teachers College Record, vol. 108, no. 6, Art. no. 6, Jun. 2006, doi: 10.1007/s11044-014-9443-6.
  100. M. Momin, J. V. Musso, W. Frey, and M. R. Buchmeiser, “Tuning the Latent Behavior of Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes in Dicyclopentadiene Polymerization,” Organometallics, vol. 0, no. 0, Art. no. 0, doi: 10.1021/acs.organomet.0c00740.
To the top of the page