Conference Proceedings

Browse through our current conference proceedings.

  1. 2023

    1. C. Schober, L. Lausmann, K. Treptow, C. Pruss, and S. Reichelt, “Complex illumination system for fast interferometric measurements,” in EPJ Web of Conferences, B. Kibler, G. Millot, and P. Segonds, Eds., in EPJ Web of Conferences, vol. 287. EDP Sciences, 2023, p. 02002. doi: 10.1051/epjconf/202328702002.
    2. A. Gröger et al., “World’s smallest single-shot two-wavelength holographic endoscope for 3D surface measurement,” in Endoscopic Microscopy XVIII, G. J. T. M.D., T. D. Wang, and M. J. Suter, Eds., in Endoscopic Microscopy XVIII, vol. PC12356. SPIE, 2023, p. PC123560P. doi: 10.1117/12.2662817.
    3. C. M. Bett, K. Frenner, S. Reichelt, and W. Osten, “Towards image-free object detection for autonomous vehicles under harsh environmental conditions,” in Optical Measurement Systems for Industrial Inspection XIII, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XIII, vol. 12618. SPIE, 2023, p. 126181C. doi: 10.1117/12.2675716.
    4. V. Aslani, T. Haist, S. Thiele, and A. Herkommer, “Sensorsystem zur minimalinvasiven intraoperativen Gewebedifferenzierung in der Onkologie mittels endoskopischer Streifenprojektion,” in DGaO Proceedings 2023, in DGaO Proceedings 2023. 2023. [Online]. Available: https://www.dgao-proceedings.de/download/124/124_a28.pdf
    5. S. Amann, T. Haist, A. Gatto, M. Kamm, and S. Reichelt, “Parallelized computed tomography imaging spectrometer,” in Digital Optical Technologies 2023, in Digital Optical Technologies 2023, vol. 12624. SPIE, 2023, pp. 71--77.
    6. C. Schober, L. Lausmann, K. Treptow, C. Pruss, and S. Reichelt, “Neue Designmöglichkeiten durch Zweiphotonenlithographie für ein RGB-Interferometer-Beleuchtungsmodul,” DGaO Proceedings, 2023.
    7. T. Haist, F. Lodholz, A. Faulhaber, and S. Reichelt, “Differential perspective as a nonexpensive distance sensing principle,” in Automated Visual Inspection and Machine Vision V, J. Beyerer and M. Heizmann, Eds., in Automated Visual Inspection and Machine Vision V, vol. 12623. SPIE, 2023, p. 126230E. doi: 10.1117/12.2673618.
    8. V. Vierhub-Lorenz et al., “Development of a LiDAR system for low visibility conditions,” in Optical Measurement Systems for Industrial Inspection XIII, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XIII, vol. 12618. SPIE, 2023, p. 126181A. doi: 10.1117/12.2673772.
    9. C. M. Bett, M. Daiber-Huppert, K. Frenner, and W. Osten, “Time-gated-single-pixel-camera: a promising sensor for robust object detection in adverse weather conditions for autonomously driven vehicles,” in Fifteenth International Conference on Machine Vision (ICMV 2022), W. Osten, D. P. Nikolaev, and J. (Jessica) Zhou, Eds., in Fifteenth International Conference on Machine Vision (ICMV 2022), vol. 12701. SPIE, 2023, p. 1270107. doi: 10.1117/12.2680031.
    10. A. Birk, K. Frenner, and W. Osten, “Deep learning based compressed sensing in machine vision: an iterative approach to multi object detection,” in Fifteenth International Conference on Machine Vision (ICMV 2022), W. Osten, D. P. Nikolaev, and J. (Jessica) Zhou, Eds., in Fifteenth International Conference on Machine Vision (ICMV 2022), vol. 12701. SPIE, 2023, p. 1270109. doi: 10.1117/12.2683929.
    11. S. Reichelt and G. Pedrini, “Digital Holography vs. Display Holography - What are their differences and what do they have in common?,” in Proceedings of the 2023 6th International Conference on Machine Vision and Applications, in Proceedings of the 2023 6th International Conference on Machine Vision and Applications. Singapore, Singapore: Association for Computing Machinery, Jun. 2023, pp. 72–80. doi: 10.1145/3589572.3589583.
    12. S. Amann, T. Haist, A. Gatto, M. Kamm, and A. Herkommer, “Intermediate image free computed tomography imaging spectrometer,” in Photonic Instrumentation Engineering X, L. E. Busse and Y. Soskind, Eds., in Photonic Instrumentation Engineering X, vol. 12428. SPIE, 2023, p. 124280G. doi: 10.1117/12.2650096.
  2. 2022

    1. A. Savchenko et al., “Fabrication of sub-wavelength circular diffraction gratings for high-power laser applications,” DGaO Proceedings, 2022.
    2. A. Groeger, G. Pedrini, D. Claus, I. Alekseenko, F. Gloeckler, and S. Reichelt, “Coherence-gated digital holographic imaging through fog,” in Digital Holography and 3-D Imaging 2022, in Digital Holography and 3-D Imaging 2022. Optica Publishing Group, 2022, p. M2A.2. doi: 10.1364/DH.2022.M2A.2.
    3. J. Drozella et al., “Micro-3D-printed multi-aperture freeform ultra-wide-angle systems: production, characterization, and correction,” in Laser-based Micro- and Nanoprocessing XVI, A. Watanabe and R. Kling, Eds., in Laser-based Micro- and Nanoprocessing XVI, vol. 11989. SPIE, 2022, p. 119890V. doi: 10.1117/12.2609844.
    4. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. M. Herkommer, “Complex 3D printed microoptical systems: from a pinhole camera to a spectrometer,” in 3D Printed Optics and Additive Photonic Manufacturing III, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., in 3D Printed Optics and Additive Photonic Manufacturing III, vol. PC12135. SPIE, 2022, p. PC1213504. doi: 10.1117/12.2624165.
    5. G. Pedrini, A. Schiebelbein, E. Achimova, and V. Abashkin, “Lensless phase imaging microscopy by multiple intensity diffraction pattern,” in Unconventional Optical Imaging III, M. P. Georges, G. Popescu, and N. Verrier, Eds., in Unconventional Optical Imaging III, vol. 12136. SPIE, 2022, p. 1213605. doi: 10.1117/12.2620778.
    6. R. Hahn, J. Görres, T. Haist, W. Osten, and S. Reichelt, “Novel snapshot hyperspectral imager based on diffractive elements,” in Optical Sensing and Detection VII, F. Berghmans and I. Zergioti, Eds., in Optical Sensing and Detection VII, vol. 12139. SPIE, 2022, p. 121390I. doi: 10.1117/12.2621521.
    7. K. Treptow, C. Schober, C. Pruss, A. Herkommer, and S. Reichelt, “Single-shot Interferometry apart from zero position measurement,” DGaO Proceedings, 2022.
    8. S. Hartlieb, C. Schober, T. Haist, and S. Reichelt, “Holographic single-image depth reconstruction,” in EPJ Web of Conferences, M. F. Costa, M. Flores-Arias, G. Pauliat, and P. Segonds, Eds., in EPJ Web of Conferences, vol. 266. EDP Sciences, 2022, p. 10005. doi: 10.1051/epjconf/202226610005.
    9. S. Hartlieb, M. Boguslawski, T. Haist, and S. Reichelt, “Holographical image based vibrometry with monochromatic and event based cameras,” in Optics and Photonics for Advanced Dimensional Metrology II, P. J. de Groot, R. K. Leach, and P. Picart, Eds., in Optics and Photonics for Advanced Dimensional Metrology II, vol. 12137. SPIE, 2022, p. 1213702. doi: 10.1117/12.2621973.
    10. F. Fischer, K. Frenner, and A. M. Herkommer, “Sparse Mid-Infrared Spectra Enable Real-time and In-vivo Applications in Tissue Discrimination,” EPJ Web of Conferences, vol. 266, p. 02004, 2022, doi: 10.1051/epjconf/202226602004.
    11. F. Fischer, A. Birk, K. Frenner, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” May 2022, doi: 10.36227/techrxiv.19803520.v1.
  3. 2021

    1. F. Rothermel, S. Thiele, C. Jung, H. Giessen, and A. Herkommer, “Towards magnetically actuated 3D-printed micro-optical elements,” in Optomechanics and Optical Alignment, K. B. Doyle, J. D. Ellis, J. M. Sasián, and R. N. Youngworth, Eds., in Optomechanics and Optical Alignment, vol. 11816. SPIE, 2021, p. 118160I. doi: 10.1117/12.2594213.
    2. C. Schober, C. Pruss, and A. Herkommer, “Integriertes Messkonzept zur Registrierung von Weißlichtinterferometriesignalen für Nanometrologie in großen Messvolumina,” DGaO Proceedings, 2021.
    3. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” in Conference on Lasers and Electro-Optics, in Conference on Lasers and Electro-Optics. Optica Publishing Group, 2021, p. ATh1R.1. doi: 10.1364/CLEO_AT.2021.ATh1R.1.
    4. A. Asadollahbaik et al., “Structured light to miniaturize optical micromanipulation,” in Optical Trapping and Optical Micromanipulation XVIII, K. Dholakia and G. C. Spalding, Eds., in Optical Trapping and Optical Micromanipulation XVIII, vol. 11798. SPIE, 2021, p. 117981G. doi: 10.1117/12.2596522.
    5. S. Ludwig, G. Pedrini, X. Peng, and W. Osten, “Ensemble cross-correlation for image retrieval from the intensity signal recorded by a single pixel,” in Optical Measurement Systems for Industrial Inspection XII, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XII, vol. 11782. SPIE, 2021, p. 1178214. doi: 10.1117/12.2592727.
  4. 2020

    1. A. Asadollahbaik et al., “Efficient mirco- and nanoparticle trapping by improved optical fiber tweezers using 3D printed diffractive optical elements,” in Optical Trapping and Optical Micromanipulation XVII, K. Dholakia and G. C. Spalding, Eds., in Optical Trapping and Optical Micromanipulation XVII, vol. 11463. SPIE, 2020, p. 114631E. doi: 10.1117/12.2567647.
    2. S. Hartlieb et al., “Accurate 3D coordinate measurement using holographic multipoint technique,” in Optics and Photonics for Advanced Dimensional Metrology, P. J. de Groot, R. K. Leach, and P. Picart, Eds., in Optics and Photonics for Advanced Dimensional Metrology, vol. 11352. SPIE, 2020, p. 1135203. doi: 10.1117/12.2555372.
    3. L. Fu, M. Daiber-Huppert, K. Frenner, and W. Osten, “Rigorous speckle simulator for large area rough surfaces using surface integral equations and multilevel fast multipole method,” DGaO Proceedings, 2020.
    4. C. Schober, C. Pruß, and A. Herkommer, “Sensordesign für die NPMM-200 am Beispiel eines Weisslichtsensors,” DGaO Proceedings, 2020.
    5. F. Guerra, A. Warsewa, S. Hartlieb, T. Haist, W. Osten, and O. Sawodny, “Holographic point replication as a sensor-enhancing technique for adaptive building control,” in Photonic Instrumentation Engineering VII, Y. Soskind and L. E. Busse, Eds., in Photonic Instrumentation Engineering VII, vol. 11287. SPIE, 2020, p. 112870Z. doi: 10.1117/12.2546226.
    6. C. Schober, C. Pruss, A. Herkommer, and W. Osten, “The NPMM-200: large area high resolution for freeform surface measurement,” in Seventh European Seminar on Precision Optics Manufacturing, O. W. Fähnle, G. Fütterer, R. Rascher, and A. Haberl, Eds., in Seventh European Seminar on Precision Optics Manufacturing, vol. 11478. SPIE, 2020, p. 1147807. doi: 10.1117/12.2564918.
    7. A. Asadollahbaik et al., “Improved optical fiber tweezers using 3D printed Fresnel lenses (Conference Presentation),” in Nanophotonics VIII, D. L. Andrews, A. J. Bain, M. Kauranen, and J.-M. Nunzi, Eds., in Nanophotonics VIII, vol. 11345. SPIE, 2020, p. 1134506. doi: 10.1117/12.2559875.
    8. V. Aslani and T. Haist, “Rauschreduktion durch den Einsatz von maschinellem Lernen in der Bildverarbeitung,” DGaO Proceedings, 2020.
    9. T. Haist, A. Steinitz, and F. Guerra, “Increasing the accuracy of imaging-based dimensional measurements,” in Optics and Photonics for Advanced Dimensional Metrology, P. J. de Groot, R. K. Leach, and P. Picart, Eds., in Optics and Photonics for Advanced Dimensional Metrology, vol. 11352. SPIE, 2020, p. 1135204. doi: 10.1117/12.2556800.
    10. R. Hahn et al., “Detailed characterization of a hyperspectral snapshot imager for full-field chromatic confocal microscopy,” in Optics and Photonics for Advanced Dimensional Metrology, P. J. de Groot, R. K. Leach, and P. Picart, Eds., in Optics and Photonics for Advanced Dimensional Metrology, vol. 11352. SPIE, 2020, p. 113520Y. doi: 10.1117/12.2556797.
    11. F. Rothermel, S. Thiele, C. Jung, and A. Herkommer, “Ansatz zur Aktuierung 3D-gedruckter Mikrooptiken mittels magnetischer Flüssigkeiten,” DGaO Proceedings, 2020.
    12. S. Thiele, A. Toulouse, S. Ristok, H. Giessen, and A. Herkommer, “Translating optical design freedom into 3D printed complex micro-optics (Conference Presentation),” in 3D Printed Optics and Additive Photonic Manufacturing II, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., in 3D Printed Optics and Additive Photonic Manufacturing II, vol. 11349. SPIE, 2020, p. 1134904. doi: 10.1117/12.2559198.
    13. S. Hartlieb, F. Guerra, M. Tscherpel, R. Hahn, T. Haist, and W. Osten, “Anwendungsgebiete der Multipoint Technik in der 3D-Positionsmessung,” DGaO Proceedings, 2020.
  5. 2019

    1. T. Haist, C. Reichert, F. Würtenberger, L. Lachenmaier, and A. Faulhaber, “Kamerabasierte Erfassung von Vitalparametern,” tm - Technisches Messen, vol. 86, no. 7–8, Art. no. 7–8, 2019, doi: doi:10.1515/teme-2019-0019.
    2. A. Harsch, C. Pruss, G. Baer, and W. Osten, “Monte Carlo simulations: a tool to assess complex measurement systems,” in Sixth European Seminar on Precision Optics Manufacturing, R. Rascher and C. Schopf, Eds., in Sixth European Seminar on Precision Optics Manufacturing, vol. 11171. SPIE, 2019, p. 111710C. doi: 10.1117/12.2526799.
    3. R. Hahn et al., “In-situ laser fabrication to reduce eccentricity errors in optical encoders,” in Conference on Lasers and Electro-Optics, in Conference on Lasers and Electro-Optics. Optica Publishing Group, 2019, p. JTu2A.12. doi: 10.1364/CLEO_AT.2019.JTu2A.12.
    4. C. Pruss, K. Frenner, and W. Osten, “NPMM200 – Sub-Nanometer-Positionierung in großen Volumina,” DGaO Proceedings, 2019.
    5. G. Pedrini, A. Calabuig, G. Jagannathan, M. Kempenaars, V. G, and W. Osten, “Two-wavelengths digital holography for erosion measurements inside the ITER Tokamak,” in Optical Metrology and Inspection for Industrial Applications VI, S. Han, T. Yoshizawa, S. Zhang, and B. Chen, Eds., in Optical Metrology and Inspection for Industrial Applications VI, vol. 11189. SPIE, 2019, p. 111890I. doi: 10.1117/12.2550453.
    6. C. Reichert, T. Gruhonjic, K. Rishav, T. Haist, and A. Herkommer, “Ganzheitliche Optimierung von optischen Systemen,” DGaO Proceedings, 2019.
    7. S. Amann, Q. Duong-Ederer, T. Haist, B. Sierk, B. Guldimann, and W. Osten, “Characterization of fiber-based slit homogenizer devices in the NIR and SWIR,” in International Conference on Space Optics — ICSO 2018, Z. Sodnik, N. Karafolas, and B. Cugny, Eds., in International Conference on Space Optics — ICSO 2018, vol. 11180. SPIE, 2019, p. 111806C. doi: 10.1117/12.2536147.
    8. S. Amann, T. Haist, and B. Sierk, “Charakterisierung von Homogenisierkomponenten für die satellitengestützte Messung von Treibhausgasen,” DGaO Proceedings, 2019.
    9. A. Faulhaber, M. Gronle, S. Haberl, T. Buchholz, T. Haist, and W. Osten, “Dynamically scanned spot projections with digital holograms for reduced measurement uncertainty in laser triangulation systems,” in AOPC 2019: Optical Sensing and Imaging Technology, J. E. Greivenkamp, J. Tanida, Y. Jiang, H. Gong, J. Lu, and D. Liu, Eds., in AOPC 2019: Optical Sensing and Imaging Technology, vol. 11338. SPIE, 2019, p. 113383F. doi: 10.1117/12.2548075.
    10. S. Ludwig, B. L. Teurnier, G. Pedrini, A. Herkommer, and W. Osten, “Deconvolution in Scatter-plate Microscopy,” in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP), in Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP). Optica Publishing Group, 2019, p. CW4A.3. doi: 10.1364/COSI.2019.CW4A.3.
    11. S. Hartlieb, M. Tscherpel, T. Haist, W. Osten, M. Ringkowski, and O. Sawodny, “Hochgenaue Kalibrierung eines Multipoint-Positionsmesssystems,” DGaO Proceedings, 2019.
    12. A. Faulhaber et al., “Hybrid telecentric triangulation sensor system with real-time field-dependent deconvolution,” in Optical Measurement Systems for Industrial Inspection XI, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XI, vol. 11056. SPIE, 2019, p. 1105613. doi: 10.1117/12.2525568.
    13. F. Guerra, S. Hartlieb, A. Warsewa, T. Haist, W. Osten, and O. Sawodny, “Deformation measurement of large buildings by holographical point replication,” in Optics for Arts, Architecture, and Archaeology VII, H. Liang, R. Groves, and P. Targowski, Eds., in Optics for Arts, Architecture, and Archaeology VII, vol. 11058. SPIE, 2019, p. 110580G. doi: 10.1117/12.2525815.
    14. S. Reichelt, “Decomposition of non-rotationally symmetric wavefront aberrations into their azimuthal orders,” in Applied Optical Metrology III, E. Novak and J. D. Trolinger, Eds., in Applied Optical Metrology III, vol. 11102. SPIE, 2019, p. 111020B. doi: 10.1117/12.2528169.
    15. T. Dietrich et al., “Thin-Disk Laser Emitting Beams with 980 W of CW-Output Power and Radial Polarization,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Jun. 2019, pp. 1–1. doi: 10.1109/CLEOE-EQEC.2019.8871934.
    16. A. Toulouse, S. Thiele, and A. Herkommer, “Virtual reality headset using a gaze-synchronized display system,” in Optical Design Challenge 2019, B. C. Kress, Ed., in Optical Design Challenge 2019, vol. 11040. SPIE, 2019, p. 1104009. doi: 10.1117/12.2523920.
    17. J. Drozella, A. Toulouse, S. Thiele, and A. M. Herkommer, “Fast and comfortable GPU-accelerated wave-optical simulation for imaging properties and design of highly aspheric 3D-printed freeform microlens systems,” in Novel Optical Systems, Methods, and Applications XXII, C. F. Hahlweg and J. R. Mulley, Eds., in Novel Optical Systems, Methods, and Applications XXII, vol. 11105. SPIE, 2019, p. 1110506. doi: 10.1117/12.2528843.
    18. R. Beisswanger, C. Pruss, C. Schober, A. Harsch, and W. Osten, “Tilted wave interferometer in common path configuration: challenges and realization,” in Optical Measurement Systems for Industrial Inspection XI, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XI, vol. 11056. SPIE, 2019, p. 110561G. doi: 10.1117/12.2526175.
    19. E. Manske et al., “Scale spanning subnanometer metrology up to ten decades,” in Optical Measurement Systems for Industrial Inspection XI, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XI, vol. 11056. SPIE, 2019, p. 110560L. doi: 10.1117/12.2526076.
    20. A. Harsch, A. Parvizi, C. Pruß, and W. Osten, “Eine effiziente Methode zur Beurteilung inverser Messverfahren,” DGaO Proceedings, 2019.
  6. 2018

    1. G. Pedrini, I. Alekseenko, W. Osten, G. Jagannathan, M. Kempenaars, and G. Vayakis, “Multi-Wavelength Digital Holography for Erosion Measurements inside the ITER Tokamak,” in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP). Optica Publishing Group, 2018, p. DW3F.1. doi: 10.1364/DH.2018.DW3F.1.
    2. C. Reichert, F. Würtenberger, V. Hinderer, T. Haist, and A. Herkommer, “Erfassung menschlicher Vitalparameter mithilfe optischer Messtechnik,” DGaO Proceedings, 2018.
    3. R. Beisswanger, C. Pruß, and W. Osten, “Interferometrische Radienbestimmung unter nicht konstanten Umgebungsbedingungen,” DGaO Proceedings, 2018.
    4. S. Ludwig, A. K. Singh, G. Pedrini, and W. Osten, “Scatter-plate microscope: improved image acquisition,” in Unconventional Optical Imaging, C. Fournier, M. P. Georges, and G. Popescu, Eds., in Unconventional Optical Imaging, vol. 10677. SPIE, 2018, p. 1067717. doi: 10.1117/12.2306252.
    5. T. Haist, Optische Phänomene in Natur und Alltag. Universität Stuttgart, 2018. [Online]. Available: http://www.optipina.de
    6. W. Osten, T. Haist, and E. Manske, “How to drive an optical measurement system to outstanding performance,” Ultra-High-Definition Imaging …, 2018, [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10557/105570Q/How-to-drive-optical-measurement-systems-to-outstanding-performance/10.1117/12.2300856.short
    7. F. Rothermel, C. Pruß, A. Herkommer, and W. Osten, “In-Prozess Messtechnik für 3D-gedruckte Optiken,” DGaO Proceedings, 2018.
    8. S. Lotz, C. Reichert, T. Haist, and A. Herkommer, “„BaKaRoS“ – ein Baukastensystem für einen niederschwelligen Zugang zur technischen Optik,” DGaO Proceedings, 2018.
    9. B. Chen, S. Thiele, M. Xu, and A. M. Herkommer, “Micro objectives with extremely large field of view,” in Optical Design and Engineering VII, L. Mazuray, R. Wartmann, and A. P. Wood, Eds., in Optical Design and Engineering VII, vol. 10690. SPIE, 2018, p. 1069016. doi: 10.1117/12.2313400.
    10. A. Baumgartner, S. Amann, C. Müller, A. Herkommer, M. Dressel, and S. Fella, “Infrared reflectance factor of various asphalts,” in Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, C. M. U. Neale and A. Maltese, Eds., in Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, vol. 10783. SPIE, 2018, p. 107831X. doi: 10.1117/12.2325509.
    11. H. Li, L. Fu, K. Frenner, and W. Osten, “A cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” DGaO Proceedings, 2018.
    12. C. Pruß and W. Osten, “Asphären- und Freiformflächenmesstechnik: Herausforderungen im Spannungsfeld zwischen Flexibilität und Kalibrierung,” DGaO Proceedings, 2018.
    13. A. Haberl et al., “Model based error separation of power spectral density artefacts in wavefront measurement,” in Interferometry XIX, K. Creath, J. Burke, M. B. N. Morris, and A. D. Davies, Eds., in Interferometry XIX, vol. 10749. SPIE, 2018, p. 107490T. doi: 10.1117/12.2321106.
    14. G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, and W. Osten, “Digital holography for erosion monitoring inside the ITER Tokamak,” in Unconventional Optical Imaging, C. Fournier, M. P. Georges, and G. Popescu, Eds., in Unconventional Optical Imaging, vol. 10677. SPIE, 2018, p. 1067722. doi: 10.1117/12.2307333.
    15. A. Herkommer and S. Thiele, “Design und Herstellung von 3D-gedruckten mikrooptischen Systemen mittels 2-Photonen Polymerisation,” DGaO Proceedings, 2018.
    16. A. Hartung, S. Thiele, J. Drozella, H. Giessen, and A. Herkommer, “Schwärzen von 3D-gedruckten Mikrooptiken mittels Inkjet-Verfahren,” DGaO Proceedings, 2018.
    17. A. Harsch, C. Pruss, A. Haberl, and W. Osten, “Tilted wave interferometry for testing large surfaces,” in Fifth European Seminar on Precision Optics Manufacturing, R. Rascher and C. Schopf, Eds., in Fifth European Seminar on Precision Optics Manufacturing, vol. 10829. SPIE, 2018, p. 1082908. doi: 10.1117/12.2318573.
  7. 2017

    1. C. Pruß et al., “Sub-lambda Polarisationsformer für Hochleistungslaser,” DGaO Proceedings, 2017.
    2. H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” in Modeling Aspects in Optical Metrology VI, B. Bodermann, K. Frenner, and R. M. Silver, Eds., in Modeling Aspects in Optical Metrology VI, vol. 10330. SPIE, 2017, p. 103300Y. doi: 10.1117/12.2275586.
    3. H. Yang, T. Haist, M. Gronle, and W. Osten, “Simulated BRDF based on measured surface topography of metal,” in Automated Visual Inspection and Machine Vision II, J. Beyerer and F. P. León, Eds., in Automated Visual Inspection and Machine Vision II, vol. 10334. SPIE, 2017, p. 1033405. doi: 10.1117/12.2269978.
    4. B. Chen and A. M. Herkommer, “Surface Resolved Aberration Contributions in Freeform Optical Systems,” in Optical Design and Fabrication 2017 (Freeform, IODC, OFT), in Optical Design and Fabrication 2017 (Freeform, IODC, OFT). Optica Publishing Group, 2017, p. JTu1C.3. doi: 10.1364/FREEFORM.2017.JTu1C.3.
    5. A. Bielke, C. Pruß, and W. Osten, “Streulichtreduzierung bei einem variablen Interferometer-Objektiv mit zwei diffraktiven Elementen,” DGaO Proceedings, 2017.
    6. C. Pruss et al., “High power polarization shaping utilizing sub-lambda-grating structures,” in EOS Topical meeting on Diffractive Optics, in EOS Topical meeting on Diffractive Optics. EOS, 2017.
    7. J. Schindler, C. Pruss, and W. Osten, “Increasing the accuracy of tilted-wave-interferometry by elimination of systematic errors,” in Optical Measurement Systems for Industrial Inspection X, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection X, vol. 10329. SPIE, 2017, p. 1032904. doi: 10.1117/12.2270395.
    8. T. Dietrich et al., “CW thin-disk laser emitting kW-class beams with radial polarization,” in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Jun. 2017, pp. 1–1. doi: 10.1109/CLEOE-EQEC.2017.8086260.
  8. 2016

    1. M. Hasler, T. Haist, and W. Osten, “Adjustment and Application of Spatial Light Modulators for Holography,” in Imaging and Applied Optics 2016, in Imaging and Applied Optics 2016. Optica Publishing Group, 2016, p. DW1D.1. doi: 10.1364/DH.2016.DW1D.1.
    2. T. Haist, Autonomes Fahren: Eine kritische Beurteilung der technischen Realisierbarkeit. elib.uni-stuttgart.de, 2016. [Online]. Available: http://elib.uni-stuttgart.de/handle/11682/8881
    3. D. Buchta, D. Claus, G. Pedrini, and W. Osten, “Depth-resolved Hyperspectral Digital Holography,” in Digital Holography and Three-Dimensional Imaging, in Digital Holography and Three-Dimensional Imaging. OSA, 2016. doi: 10.1364/dh.2017.w4a.3.
    4. G. Pedrini, V. Martínez-García, P. Weidmann, A. Singh, and W. Osten, “Optical methods for the analysis of residual stresses and measurement of displacements in the nanometric range,” in 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), in 2016 IEEE 14th International Conference on Industrial Informatics (INDIN). Jul. 2016, pp. 570–575. doi: 10.1109/INDIN.2016.7819227.
    5. H. Yang, T. Haist, M. Gronle, and ..., “Realistic simulation of camera images of micro-scale defects for automated defect inspection,” Forum Bildverarbeitung …, 2016, [Online]. Available: https://books.google.com/books?hl=en&lr=&id=_IefDQAAQBAJ&oi=fnd&pg=PA63&dq=%22t+haist%22&ots=tyU4a1RJdy&sig=j1LLq90hD1IqhQ2Q5BB8GV9i7XU
    6. G. Pedrini, D. Claus, and W. Osten, “Digital holography using wavefront scanning,” in Imaging and Applied Optics 2016, in Imaging and Applied Optics 2016. Optica Publishing Group, 2016, p. DW5E.3. doi: 10.1364/DH.2016.DW5E.3.
    7. M. Zhou, A. K. Singh, G. Pedrini, W. Osten, and B. Yao, “Speckle-correlation Microscopic Imaging through Scattering Medium,” in Imaging and Applied Optics 2016, in Imaging and Applied Optics 2016. Optica Publishing Group, 2016, p. DT1E.2. doi: 10.1364/DH.2016.DT1E.2.
    8. D. Claus, J. Thiem, J. Hennenlotter, G. Pedrini, A. Stenzl, and W. Osten, “Iterative phase retrieval imaging based on variable wavefront curvature for biomedical imaging,” in Imaging and Applied Optics 2016, in Imaging and Applied Optics 2016. Optica Publishing Group, 2016, p. JW4A.25. doi: 10.1364/3D.2016.JW4A.25.
  9. 2015

    1. H. Yang, T. Haist, M. Gronle, and W. Osten, “Realistic simulation of camera images of local surface defects in the context of multi-sensor inspection systems,” in Optical Measurement Systems for Industrial Inspection IX, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection IX, vol. 9525. SPIE, 2015, p. 952522. doi: 10.1117/12.2184612.
    2. A. Bielke, G. Baer, C. Pruss, and W. Osten, “Model-based calibration of an interferometric setup with a diffractive zoom-lens,” in 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, Y. Wang, X. Tan, and K. Tatsuno, Eds., in 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, vol. 9618. SPIE, 2015, p. 961807. doi: 10.1117/12.2191579.
    3. W. Osten, G. Pedrini, P. Weidmann, and R. Gadow, “A flexible method for residual stress measurement of spray coated layers by laser made hole drilling and SLM based beam steering,” in SPECKLE 2015: VI International Conference on Speckle Metrology, F. M. Santoyo and E. R. Mendez, Eds., in SPECKLE 2015: VI International Conference on Speckle Metrology, vol. 9660. SPIE, 2015, p. 96600H. doi: 10.1117/12.2196869.
    4. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Real-time imaging through thin scattering layer and looking around the opaque surface,” in Digital Holography & 3-D Imaging Meeting, in Digital Holography & 3-D Imaging Meeting. Optica Publishing Group, 2015, p. DTh3A.5. doi: 10.1364/DH.2015.DTh3A.5.
    5. D. Buchta, N. Hein, G. Pedrini, C. Krekel, and W. Osten, “Combination of topology and structural information for damages and deterioration analysis of artworks,” in Optics for Arts, Architecture, and Archaeology V, L. Pezzati and P. Targowski, Eds., in Optics for Arts, Architecture, and Archaeology V, vol. 9527. SPIE, 2015, p. 95270Q. doi: 10.1117/12.2184690.
    6. T. Haist et al., “Towards one trillion positions,” in Automated Visual Inspection and Machine Vision, J. Beyerer and F. P. León, Eds., in Automated Visual Inspection and Machine Vision, vol. 9530. SPIE, 2015, p. 953004. doi: 10.1117/12.2184636.
  10. 2014

    1. F. Schaal, T. Haist, A. Peter, A. Beeck, and ..., “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE, 2014, [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9271/927105/Applications-of-diffractive-optical-elements-for-optical-measurement-techniques/10.1117/12.2071106.short
    2. S. Dong, T. Haist, T. Dietrich, and W. Osten, “Hybrid curvature and modal wavefront sensor,” in Unconventional Imaging and Wavefront Sensing 2014, J. J. Dolne, T. J. Karr, and V. L. Gamiz, Eds., in Unconventional Imaging and Wavefront Sensing 2014, vol. 9227. SPIE, 2014, p. 922702. doi: 10.1117/12.2058849.
    3. C. Lingel, M. Hasler, T. Haist, G. Pedrini, and W. Osten, “A benchmark system for the evaluation of selected phase retrieval methods,” in Optical Micro- and Nanometrology V, C. Gorecki, A. K. Asundi, and W. Osten, Eds., in Optical Micro- and Nanometrology V, vol. 9132. SPIE, 2014, p. 91320R. doi: 10.1117/12.2057472.
    4. J. Schindler, G. Baer, C. Pruss, and W. Osten, “The tilted-wave-interferometer: freeform surface reconstruction in a non-null setup,” in International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors, J. Czarske, S. Zhang, D. Sampson, W. Wang, and Y. Liao, Eds., in International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors, vol. 9297. SPIE, 2014, p. 92971R. doi: 10.1117/12.2073053.
    5. T. Haist, M. Gronle, T. Arnold, D. Bui, and ..., “Verbesserung von Positions-bestimmungen mittels holografischer Mehrpunktgenerierung,” Forum …, 2014, [Online]. Available: https://books.google.com/books?hl=en&lr=&id=s8CiBQAAQBAJ&oi=fnd&pg=PA239&dq=%22t+haist%22&ots=wkI4RaaN75&sig=7jfkYWMB2Hz-09BS2Y_RFVSAJqY
    6. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking around the corner and through a diffuser: different approaches,” in Imaging and Applied Optics 2014, in Imaging and Applied Optics 2014. Optica Publishing Group, 2014, p. DTu3B.3. doi: 10.1364/DH.2014.DTu3B.3.
    7. V. M. Garc\’ıa, G. Pedrini, A. Killinger, R. Gadow, and W. Osten, “Residual Stress Analysis on Thermally Sprayed Coatings by Means of Optical and Mechanical Methods,” in International Thermal Spray Conference, R. S. Lima, A. Agarwal, M. M. Hyland, Y.-C. Lau, G. Mauer, A. McDonald, and F.-L. Toma, Eds., in International Thermal Spray Conference. DVS Media GmbH, May 2014. doi: 10.31399/asm.cp.itsc2014p0190.
    8. A. Faridian, G. Pedrini, and W. Osten, “High-contrast 3D microscopic imaging of deep layers in a biological medium,” in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXI, T. G. Brown, C. J. Cogswell, and T. Wilson, Eds., in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXI, vol. 8949. SPIE, 2014, p. 89490H. doi: 10.1117/12.2037310.
    9. M. P. Georges et al., “Speckle interferometry at 10 micrometers wavelength: a combined thermography and interferometry technique and its application in aeronautical nondestructive testing,” in Interferometry XVII: Advanced Applications, C. Furlong, C. Gorecki, P. J. de Groot, and E. L. Novak, Eds., in Interferometry XVII: Advanced Applications, vol. 9204. SPIE, 2014, p. 92040F. doi: 10.1117/12.2062816.
    10. M. P. Georges et al., “Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths,” Optics Express, vol. 22, no. 21, Art. no. 21, Oct. 2014, doi: 10.1364/oe.22.025517.
    11. C. Pruss, G. Baer, J. Schindler, and W. Osten, “Flexibility and rapid measurement: asphere and freeform metrology with Tilted Wave Interferometry,” in Classical Optics 2014, in Classical Optics 2014. Optica Publishing Group, 2014, p. OW2B.1. doi: 10.1364/OFT.2014.OW2B.1.
    12. A. Bielke, C. Pruss, and W. Osten, “Experimental demonstration of a diffractive zoom-lens for an interferometric setup,” in Classical Optics 2014, in Classical Optics 2014. Optica Publishing Group, 2014, p. OTu4A.3. doi: 10.1364/OFT.2014.OTu4A.3.
    13. F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” in Holography, Diffractive Optics, and Applications VI, Y. Sheng, C. Yu, and C. Zhou, Eds., in Holography, Diffractive Optics, and Applications VI, vol. 9271. SPIE, 2014, p. 927105. doi: 10.1117/12.2071106.
  11. 2013

    1. T. Haist, C. Lingel, W. Osten, K. Bendel, and ..., “Characterization and demonstration of a 12-channel laser-Doppler vibrometer,” Proc. SPIE, 2013, [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8788/87881V/Characterization-and-demonstration-of-a-12-channel-Laser-Doppler-vibrometer/10.1117/12.2020475.short
To the top of the page