Journal Articles

Browse through our current reviewed publications.

  1. 2024

    1. F. Rothermel et al., “Fabrication and Characterization of a Magnetic 3D‐printed Microactuator,” Advanced Materials Technologies, Apr. 2024, doi: 10.1002/admt.202302196.
    2. M. Wende, J. Drozella, A. Toulouse, and A. M. Herkommer, “Fast vector wave optical simulation methods for application on 3D-printed microoptics,” Journal of Optical Microsystems, vol. 4, no. 2, Art. no. 2, 2024, doi: 10.1117/1.JOM.4.2.024501.
    3. Ö. Atmaca, J. Liu, T. J. Ly, F. Bajraktari, and P. P. Pott, “Spatial sensitivity distribution assessment and Monte Carlo simulations for needle‐based bioimpedance imaging during venipuncture using the finite element method,” International Journal for Numerical Methods in Biomedical Engineering, May 2024, doi: 10.1002/cnm.3831.
  2. 2023

    1. S. Hartlieb, C. Schober, T. Haist, and S. Reichelt, “Field evaluation of a novel holographic single-image depth reconstruction sensor,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023017.
    2. L. Fu, M. Daiber-Huppert, K. Frenner, and W. Osten, “Simulation of realistic speckle fields by using surface integral equation and multi-level fast multipole method,” Optics and Lasers in Engineering, vol. 162, p. 107438, Mar. 2023, doi: 10.1016/j.optlaseng.2022.107438.
    3. R. Beisswanger, C. Pruss, and S. Reichelt, “Retrace error calibration for interferometric measurements using an unknown optical system,” Opt. Express, vol. 31, no. 17, Art. no. 17, Aug. 2023, doi: 10.1364/OE.496059.
    4. M. Raza, Y. Chen, J. Trapp, H. Sun, X. Huang, and W. Ren, “Smoldering peat fire detection by time-resolved measurements of transient CO2 and CH4 emissions using a novel dual-gas optical sensor,” Fuel, vol. 334, p. 126750, Feb. 2023, doi: 10.1016/j.fuel.2022.126750.
    5. D. Didychenko et al., “Generation of a radially polarized beam in a polycrystalline ceramic Yb:Lu2O3 thin-disk laser,” Applied Physics B, vol. 129, no. 9, Art. no. 9, Aug. 2023, doi: 10.1007/s00340-023-08089-6.
    6. F. Fischer, K. Frenner, M. Granai, F. Fend, and A. Herkommer, “Data-driven development of sparse multi-spectral sensors for urological tissue differentiation,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023030.
    7. T. Haist, R. Hahn, and S. Reichelt, “Diffraction-based dual path multispectral imaging,” tm - Technisches Messen, 2023, doi: doi:10.1515/teme-2023-0007.
    8. J. Wu et al., “Linear scalability of dense-pattern Herriott-type multipass cell design,” Applied Physics B, vol. 129, no. 6, Art. no. 6, May 2023, doi: 10.1007/s00340-023-08031-w.
    9. T. Haist, R. Hahn, and K. Michel, “Imaging device for imaging at least one object.” Google Patents, 2023.
    10. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D printing of colored micro-optics,” Optical Materials Express, vol. 13, no. 5, Art. no. 5, Apr. 2023, doi: 10.1364/ome.489681.
    11. S. Crowell, T. Haist, M. Tscherpel, J. Caron, E. Burgh, and B. Moore III, “Performance and polarization response of slit homogenizers for the GeoCarb mission,” Atmospheric Measurement Techniques, vol. 16, no. 1, Art. no. 1, 2023, doi: 10.5194/amt-16-195-2023.
    12. J. Liu, Ö. Atmaca, and P. P. Pott, “Needle-Based Electrical Impedance Imaging Technology for Needle Navigation,” Bioengineering, vol. 10, no. 5, Art. no. 5, 2023, doi: 10.3390/bioengineering10050590.
    13. M. Wende, J. Drozella, and A. M. Herkommer, “Fast bidirectional vector wave propagation method showcased on targeted noise reduction in imaging fiber bundles using 3D-printed micro optics,” Optics Express, vol. 31, no. 18, Art. no. 18, Aug. 2023, doi: 10.1364/oe.497244.
    14. A. Gröger, G. Pedrini, D. Claus, I. Alekseenko, F. Gloeckler, and S. Reichelt, “Advantages of holographic imaging through fog,” Applied Optics, vol. 62, no. 10, Art. no. 10, Jan. 2023, doi: 10.1364/ao.478435.
    15. C. M. Bett, M. Daiber-Huppert, K. Frenner, and W. Osten, “Evaluation of a time-gated-single-pixel-camera as a promising sensor for autonomous vehicles in harsh weather conditions,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023023.
    16. S. Amann, T. Haist, A. Gatto, M. Kamm, and A. Herkommer, “Design and realization of a miniaturized high resolution computed tomography imaging spectrometer,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 2, Art. no. 2, 2023, doi: 10.1051/jeos/2023027.
    17. H. Li, L. Fu, K. Frenner, and W. Osten, “Design studies of a far-field plasmonic superlens with an enlarged field of view,” Optical Materials, vol. 138, p. 113688, Apr. 2023, doi: 10.1016/j.optmat.2023.113688.
    18. S. Wagner et al., “Injection Molding of Encapsulated Diffractive Optical Elements,” Micromachines, vol. 14, no. 6, Art. no. 6, 2023, doi: 10.3390/mi14061223.
    19. A. Gröger, G. Pedrini, F. Fischer, D. Claus, I. Aleksenko, and S. Reichelt, “Two-wavelength digital holography through fog,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023024.
  3. 2022

    1. M. Ringkowski, E. Arnold, S. Hartlieb, T. Haist, W. Osten, and O. Sawodny, “Precision tracking control of a dual-stage measuring machine,” at - Automatisierungstechnik, vol. 70, no. 7, Art. no. 7, 2022, doi: doi:10.1515/auto-2021-0165.
    2. A. Faulhaber, C. Krächan, and T. Haist, “Depth from axial differential perspective,” Optics Continuum, vol. 1, no. 1, Art. no. 1, Jan. 2022, doi: 10.1364/optcon.451413.
    3. A. Gronle, C. Pruss, and A. Herkommer, “Misalignment of spheres, aspheres and freeforms in optical measurement systems,” Optics Express, vol. 30, no. 2, Art. no. 2, Jan. 2022, doi: 10.1364/oe.443420.
    4. A. Schiebelbein and G. Pedrini, “Lensless phase imaging microscopy using multiple intensity diffraction patterns obtained under coherent and partially coherent illumination,” Appl. Opt., vol. 61, no. 5, Art. no. 5, Feb. 2022, doi: 10.1364/AO.444824.
    5. T. Haist, R. Hahn, and S. Reichelt, “Areal multispectral sensor with variable choice of spatial and spectral resolution,” Forum Bildverarbeitung 2022, vol. 2022, 2022.
    6. F. Guerra, P. Wilhelm, and T. Haist, “Holographic Wide-Angle System for Deformation Measurement of Extended Structures,” Optics, vol. 3, no. 1, Art. no. 1, 2022, doi: 10.3390/opt3010010.
    7. A. Toulouse et al., “Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design,” Opt. Express, vol. 30, no. 2, Art. no. 2, Jan. 2022, doi: 10.1364/OE.439963.
    8. A. Toulouse et al., “High resolution femtosecond direct laser writing with wrapped lens,” Opt. Mater. Express, vol. 12, no. 9, Art. no. 9, Sep. 2022, doi: 10.1364/OME.468534.
    9. R. Hahn, T. Haist, K. Michel, and W. Osten, “Diffraction-based hyperspectral snapshot imager,” Optical Engineering, vol. 61, no. 1, Art. no. 1, 2022, doi: 10.1117/1.OE.61.1.015106.
    10. M. D. Schmid, A. Toulouse, S. Thiele, S. Mangold, A. M. Herkommer, and H. Giessen, “3D Direct Laser Writing of Highly Absorptive Photoresist for Miniature Optical Apertures,” Advanced Functional Materials, p. 2211159, Dec. 2022, doi: 10.1002/adfm.202211159.
    11. L. Bremer et al., “Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots,” Opt. Express, vol. 30, no. 10, Art. no. 10, May 2022, doi: 10.1364/OE.456777.
    12. L. Becker et al., “Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids,” International Journal of Molecular Sciences, vol. 23, no. 13, Art. no. 13, 2022, doi: 10.3390/ijms23136956.
    13. F. Fischer, A. Birk, P. Somers, K. Frenner, C. Tarín, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” Machine Learning and Knowledge Extraction, vol. 4, no. 4, Art. no. 4, 2022, doi: 10.3390/make4040049.
    14. M. Wende, J. Drozella, A. Toulouse, and A. M. Herkommer, “Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method,” Optics Express, vol. 30, no. 22, Art. no. 22, Oct. 2022, doi: 10.1364/oe.469178.
    15. M. Zimmermann, S. Amann, M. Mel, T. Haist, and A. Gatto, “Deep learning-based hyperspectral image reconstruction from emulated and real computed tomography imaging spectrometer data,” Optical Engineering, vol. 61, no. 5, Art. no. 5, 2022, doi: 10.1117/1.OE.61.5.053103.
    16. S. Amann, T. Haist, A. Gatto, M. Kamm, and A. Herkommer, “Design and realization of a miniaturized high resolution computed tomography imaging spectrometer,” EPJ Web of Conferences, vol. 266, p. 02001, 2022, doi: 10.1051/epjconf/202226602001.
    17. M. A. Ahmed et al., “High-power thin-disk lasers emitting beams with axially-symmetric polarizations,” Nanophotonics, vol. 11, no. 4, Art. no. 4, 2022, doi: doi:10.1515/nanoph-2021-0606.
    18. R. Li, G. Pedrini, Z. Huang, S. Reichelt, and L. Cao, “Physics-enhanced neural network for phase retrieval from two diffraction patterns,” Opt. Express, vol. 30, no. 18, Art. no. 18, Aug. 2022, doi: 10.1364/OE.469080.
    19. R. Beisswanger, M. Weckerle, C. Pruss, and S. Reichelt, “Interferometric radius of curvature measurements: an environmental error treatment,” Optics Express, vol. 30, no. 14, Art. no. 14, Jul. 2022, doi: 10.1364/oe.461972.
    20. C. Schober, R. Beisswanger, A. Gronle, C. Pruss, and W. Osten, “Tilted Wave Fizeau Interferometer for flexible and robust asphere and freeform testing,” Light: Advanced Manufacturing, vol. 3, no. 4, Art. no. 4, 2022, doi: 10.37188/lam.2022.048.
    21. P. Ruchka et al., “Microscopic 3D printed optical tweezers for atomic quantum technology,” Quantum Science and Technology, vol. 7, no. 4, Art. no. 4, Jul. 2022, doi: 10.1088/2058-9565/ac796c.
    22. W. Osten and G. Pedrini, “55 Years of Holographic Non-Destructive Testing and Experimental Stress Analysis: Is there still Progress to be expected?,” Light: Advanced Manufacturing, vol. 3, no. 1, Art. no. 1, 2022, doi: 10.37188/lam.2022.008.
    23. L. Fu, M. Daiber-Huppert, K. Frenner, and W. Osten, “Simulation of Realistic Speckle Fields by Using Surface Integral Equation and Fast Multipole Method,” SSRN eLibrary, 2022, doi: 10.2139/ssrn.4160509.
    24. S. Walz, V. Aslani, O. Sawodny, and A. Stenzl, “Robotic radical cystectomy – more precision needed?,” Current Opinion in Urology, vol. Publish Ahead of Print, Dec. 2022, doi: 10.1097/mou.0000000000001072.
    25. S. Hartlieb, C. Schober, T. Haist, and S. Reichelt, “Accurate single image depth detection using multiple rotating point spread functions,” Optics Express, vol. 30, no. 13, Art. no. 13, Jun. 2022, doi: 10.1364/oe.458541.
    26. V. Aslani, F. Guerra, A. Steinitz, P. Wilhelm, and T. Haist, “Averaging approaches for highly accurate image-based edge localization,” Optics Continuum, vol. 1, no. 4, Art. no. 4, Apr. 2022, doi: 10.1364/optcon.453537.
    27. J. Schwab et al., “Coupling light emission of single-photon sources into single-mode fibers: mode matching, coupling efficiencies, and thermo-optical effects,” Opt. Express, vol. 30, no. 18, Art. no. 18, Aug. 2022, doi: 10.1364/OE.465101.
  4. 2021

    1. Y. Arezki et al., “Traceable Reference Full Metrology Chain for Innovative Aspheric and Freeform Optical Surfaces Accurate at the Nanometer Level,” Sensors, vol. 21, no. 4, Art. no. 4, 2021, doi: 10.3390/s21041103.
    2. M. L. Gödecke, K. Frenner, and W. Osten, “Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry,” Light: Advanced Manufacturing, vol. 2, no. 2, Art. no. 2, 2021, doi: 10.37188/lam.2021.018.
    3. D. Claus, I. Alekseenko, M. Grabherr, G. Pedrini, and R. Hibst, “Snap-shot topography measurement via dual-VCSEL and dual wavelength digital holographic interferometry,” Light: Advanced Manufacturing, vol. 2, no. 4, Art. no. 4, 2021, doi: 10.37188/lam.2021.029.
    4. S. Ludwig, P. Ruchka, G. Pedrini, X. Peng, and W. Osten, “Scatter-plate microscopy with spatially coherent illumination and temporal scatter modulation,” Opt. Express, vol. 29, no. 3, Art. no. 3, Feb. 2021, doi: 10.1364/OE.412047.
    5. N. Harland et al., “Organoide zur Weiterentwicklung der intraoperativen Diagnostik,” Der Urologe, vol. 60, no. 9, Art. no. 9, Sep. 2021, doi: 10.1007/s00120-021-01595-5.
    6. S. Ludwig, G. Pedrini, X. Peng, and W. Osten, “Single-pixel scatter-plate microscopy,” Opt. Lett., vol. 46, no. 10, Art. no. 10, May 2021, doi: 10.1364/OL.420593.
    7. F. Glöckler, F. Hausladen, I. Alekseenko, A. Gröger, G. Pedrini, and D. Claus, “Two-photon-polymerization enabled and enhanced multi-channel fibre switch,” Engineering Research Express, vol. 3, no. 4, Art. no. 4, Nov. 2021, doi: 10.1088/2631-8695/ac34c5.
    8. C. Schober, C. Pruss, A. Faulhaber, and A. Herkommer, “Event based coherence scanning interferometry,” Optics Letters, vol. 46, no. 17, Art. no. 17, Aug. 2021, doi: 10.1364/ol.437489.
    9. F. Beirow et al., “Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures,” OSA Continuum, vol. 4, no. 2, Art. no. 2, Jan. 2021, doi: 10.1364/osac.414100.
    10. A. Birk, Y. Wilhelm, S. Dreher, C. Flack, P. Reimann, and C. Gröger, “A Real-World Application of Process Mining for Data-Driven Analysis of Multi-Level Interlinked Manufacturing Processes,” Procedia CIRP, vol. 104, pp. 417--422, 2021, doi: 10.1016/j.procir.2021.11.070.
    11. S. Hartlieb et al., “Highly accurate imaging based position measurement using holographic point replication,” Measurement, vol. 172, p. 108852, Feb. 2021, doi: 10.1016/j.measurement.2020.108852.
    12. S. Hartlieb, M. Ringkowski, T. Haist, O. Sawodny, and W. Osten, “Multi-positional image-based vibration measurement by holographic image replication,” Light: Advanced Manufacturing, vol. 2, no. 4, Art. no. 4, 2021, doi: 10.37188/lam.2021.032.
    13. G. Pedrini and D. Claus, “Phase retrieval using bidirectional interference,” Appl. Opt., vol. 60, no. 12, Art. no. 12, Apr. 2021, doi: 10.1364/AO.415927.
    14. H. Pang, T. Haist, and T. Haecker, “Absorption of tailored laser beams within 3D laser cutting kerfs,” Journal of Laser Applications, vol. 33, no. 3, Art. no. 3, Jun. 2021, doi: 10.2351/7.0000408.
    15. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. Herkommer, “3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint,” Light: Advanced Manufacturing, vol. 2, no. 1, Art. no. 1, 2021, doi: 10.37188/lam.2021.002.
  5. 2020

    1. C. Flack, S. Dreher, A. Birk, and Y. Wilhelm, “Process Mining in der Produktion,” ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 115, no. 11, Art. no. 11, Nov. 2020, doi: 10.3139/104.112459.
    2. H. Pang, T. Haecker, A. Bense, T. Haist, and D. Flamm, “Focal field analysis of highly multi-mode fiber beams based on modal decomposition,” Applied Optics, vol. 59, no. 22, Art. no. 22, Jul. 2020, doi: 10.1364/ao.397498.
    3. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” Opt. Mater. Express, vol. 10, no. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OME.401724.
    4. I. Alekseenko et al., “Residual Stress Evaluation in Ceramic Coating Under Industrial Conditions by Digital Holography,” IEEE Transactions on Industrial Informatics, vol. 16, no. 2, Art. no. 2, Feb. 2020, doi: 10.1109/TII.2019.2939972.
    5. A. Asadollahbaik et al., “Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses,” ACS Photonics, vol. 7, no. 1, Art. no. 1, Jan. 2020, doi: 10.1021/acsphotonics.9b01024.
    6. R. Su et al., “Lens aberration compensation in interference microscopy,” Optics and Lasers in Engineering, vol. 128, p. 106015, May 2020, doi: 10.1016/j.optlaseng.2020.106015.
    7. F. Guerra, T. Haist, A. Warsewa, S. Hartlieb, W. Osten, and C. Tar\’ın, “Precise building deformation measurement using holographic multipoint replication,” Applied Optics, vol. 59, no. 9, Art. no. 9, Mar. 2020, doi: 10.1364/ao.385594.
    8. A. Warsewa et al., “Self-tuning state estimation for adaptive truss structures using strain gauges and camera-based position measurements,” Mechanical Systems and Signal Processing, vol. 143, p. 106822, Sep. 2020, doi: 10.1016/j.ymssp.2020.106822.
    9. S. Schmidt et al., “Tailored micro-optical freeform holograms for integrated complex beam shaping,” Optica, vol. 7, no. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OPTICA.395177.
    10. S. Hartlieb et al., “Hochgenaue Kalibrierung eines holografischen Multi-Punkt-Positionsmesssystems,” tm - Technisches Messen, vol. 87, no. 7–8, Art. no. 7–8, 2020, doi: doi:10.1515/teme-2019-0153.
    11. M. L. Gödecke, C. M. Bett, D. Buchta, K. Frenner, and W. Osten, “Optical sensor design for fast and process-robust position measurements on small diffraction gratings,” Optics and Lasers in Engineering, vol. 134, p. 106267, Nov. 2020, doi: 10.1016/j.optlaseng.2020.106267.
    12. I. Fortmeier et al., “Round robin comparison study on the form measurement of optical freeform surfaces,” Journal of the European Optical Society-Rapid Publications, vol. 16, no. 1, Art. no. 1, Jan. 2020, doi: 10.1186/s41476-019-0124-1.
    13. M. Ringkowski, O. Sawodny, S. Hartlieb, T. Haist, and W. Osten, “Estimating dynamic positioning errors of coordinate measuring machines,” Mechatronics, vol. 68, p. 102383, Jun. 2020, doi: 10.1016/j.mechatronics.2020.102383.
    14. R. Hahn et al., “Detailed characterization of a mosaic based hyperspectral snapshot imager,” Optical Engineering, vol. 59, no. 12, Art. no. 12, 2020, doi: 10.1117/1.OE.59.12.125102.
  6. 2019

    1. M. Roeder et al., “Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding,” Journal of Manufacturing Processes, vol. 47, pp. 402--409, Nov. 2019, doi: 10.1016/j.jmapro.2019.10.012.
    2. S. Ludwig, B. L. Teurnier, G. Pedrini, X. Peng, and W. Osten, “Image reconstruction and enhancement by deconvolution in scatter-plate microscopy,” Opt. Express, vol. 27, no. 16, Art. no. 16, Aug. 2019, doi: 10.1364/OE.27.023049.
    3. S. Thiele, C. Pruss, A. M. Herkommer, and H. Giessen, “3D printed stacked diffractive microlenses,” Optics Express, vol. 27, no. 24, Art. no. 24, Nov. 2019, doi: 10.1364/oe.27.035621.
    4. T. Haist, C. Reichert, and ..., “Camera-based measurement of vital signs,” TM …, 2019.
    5. F. Würtenberger, T. Haist, C. Reichert, A. Faulhaber, T. Boettcher, and A. Herkommer, “Optimum Wavelengths in the Near Infrared for Imaging Photoplethysmography,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, Art. no. 10, Oct. 2019, doi: 10.1109/TBME.2019.2897284.
    6. G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, and W. Osten, “Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the International Thermonuclear Experimental Reactor tokamak \invited\,” Appl. Opt., vol. 58, no. 5, Art. no. 5, Feb. 2019, doi: 10.1364/AO.58.00A147.
  7. 2018

    1. D. Claus, G. Pedrini, D. Buchta, and W. Osten, “Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography,” J. Opt. Soc. Am. A, vol. 35, no. 4, Art. no. 4, Apr. 2018, doi: 10.1364/JOSAA.35.000546.
    2. H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength,” Optics Express, vol. 26, no. 15, Art. no. 15, Jul. 2018, doi: 10.1364/oe.26.019574.
    3. F. Schaal et al., “Optically addressed modulator for tunable spatial polarization control,” Optics Express, vol. 26, no. 21, Art. no. 21, Oct. 2018, doi: 10.1364/oe.26.028119.
    4. D. Buchta, H. Serbes, D. Claus, G. Pedrini, and W. Osten, “Soft tissue elastography via shearing interferometry,” Journal of Medical Imaging, vol. 5, no. 4, Art. no. 4, 2018, doi: 10.1117/1.JMI.5.4.046001.
    5. D. Claus and G. Pedrini, “Ptychography: quantitative phase imaging with incoherent imaging properties,” in Unconventional Optical Imaging, C. Fournier, M. P. Georges, and G. Popescu, Eds., in Unconventional Optical Imaging, vol. 10677. SPIE, 2018, p. 106771E. doi: 10.1117/12.2313110.
    6. A. Keck, O. Sawodny, M. Gronle, T. Haist, and W. Osten, “Model-Based Compensation of Dynamic Errors in Measuring Machines and Machine Tools,” IEEE/ASME Transactions on Mechatronics, vol. 23, no. 5, Art. no. 5, Oct. 2018, doi: 10.1109/TMECH.2018.2868012.
    7. R. Schachtschneider et al., “Interlaboratory comparison measurements of aspheres,” Measurement Science and Technology, vol. 29, no. 5, Art. no. 5, Apr. 2018, doi: 10.1088/1361-6501/aaae96.
    8. D. Claus, J. Hennenlotter, Q. Liting, G. Pedrini, A. Stenzl, and W. Osten, “Variable Wavefront Curvature Phase Retrieval Compared to Off-Axis Holography and Its Useful Application to Support Intraoperative Tissue Discrimination,” Applied Sciences, vol. 8, no. 11, Art. no. 11, 2018, doi: 10.3390/app8112147.
    9. D. Claus, G. Pedrini, T. Boettcher, M. Taphanel, W. Osten, and R. Hibst, “Development of a realistic wave propagation-based chromatic confocal microscopy model,” in Unconventional Optical Imaging, C. Fournier, M. P. Georges, and G. Popescu, Eds., in Unconventional Optical Imaging, vol. 10677. SPIE, 2018, p. 106770X. doi: 10.1117/12.2314914.
    10. A. Faulhaber et al., “Dynamic holography for speckle noise reduction in hybrid measurement system,” in Laser Beam Shaping XVIII, A. Dudley and A. V. Laskin, Eds., in Laser Beam Shaping XVIII, vol. 10744. SPIE, 2018, p. 107440J. doi: 10.1117/12.2320486.
    11. D. Buchta, C. Heinemann, G. Pedrini, C. Krekel, and W. Osten, “Combination of FEM simulations and shearography for defect detection on artwork,” Strain, vol. 54, no. 3, Art. no. 3, Jan. 2018, doi: 10.1111/str.12269.
    12. T. Dietrich et al., “Thin-disk oscillator delivering radially polarized beams with up to 9800.167em0.167emW of CW output power,” Optics Letters, vol. 43, no. 6, Art. no. 6, Mar. 2018, doi: 10.1364/ol.43.001371.
    13. G. Hagen, A. Harsch, and R. Moos, “A pathway to eliminate the gas flow dependency of a hydrocarbon sensor for automotive exhaust applications,” Journal of Sensors and Sensor Systems, vol. 7, no. 1, Art. no. 1, 2018, doi: 10.5194/jsss-7-79-2018.
    14. A. Baumgartner, S. Amann, M. Werz, A. Herkommer, M. Dressel, and S. Fella, “Near-infrared optical investigations of snow, ice, and water layers on diffuse reflecting surfaces,” Review of Scientific Instruments, vol. 89, no. 12, Art. no. 12, Dec. 2018, doi: 10.1063/1.5049652.
    15. H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Optics Express, vol. 26, no. 8, Art. no. 8, Apr. 2018, doi: 10.1364/oe.26.010888.
    16. A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett., vol. 43, no. 21, Art. no. 21, Nov. 2018, doi: 10.1364/OL.43.005283.
  8. 2017

    1. C. Pruss, G. B. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Optical Engineering, vol. 56, no. 11, Art. no. 11, 2017, doi: 10.1117/1.OE.56.11.111713.
    2. S. Gharbi, H. Pang, C. Lingel, T. Haist, and W. Osten, “Reduction of chromatic dispersion using multiple carrier frequency patterns in SLM-based microscopy,” Applied Optics, vol. 56, no. 23, Art. no. 23, Aug. 2017, doi: 10.1364/ao.56.006688.
    3. H. Yang, T. Haist, M. Gronle, and W. Osten, “Simulation of microscopic metal surfaces based on measured microgeometry,” tm - Technisches Messen, vol. 84, no. 7–8, Art. no. 7–8, 2017, doi: doi:10.1515/teme-2017-0019.
    4. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Exploiting scattering media for exploring 3D objects,” Light: Science & Applications, vol. 6, no. 2, Art. no. 2, Feb. 2017, doi: 10.1038/lsa.2016.219.
    5. M. Eckerle et al., “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Applied Physics B, vol. 123, no. 5, Art. no. 5, Apr. 2017, doi: 10.1007/s00340-017-6720-0.
    6. D. Claus et al., “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation (erratum),” Journal of Medical Imaging, vol. 4, no. 2, Art. no. 2, 2017, doi: 10.1117/1.JMI.4.2.029801.
    7. D. Buchta, C. Heinemann, G. Pedrini, C. Krekel, and W. Osten, “Lock-in-shearography for the detection of transport-induced damages on artwork,” in Optics for Arts, Architecture, and Archaeology VI, L. Pezzati and P. Targowski, Eds., in Optics for Arts, Architecture, and Archaeology VI, vol. 10331. SPIE, 2017, p. 103310G. doi: 10.1117/12.2270278.
    8. C. S. Narayanamurthy, G. Pedrini, and W. Osten, “Digital holographic photoelasticity,” Appl. Opt., vol. 56, no. 13, Art. no. 13, May 2017, doi: 10.1364/AO.56.00F213.
    9. M. Zhou, A. K. Singh, G. Pedrini, W. Osten, J. Min, and B. Yao, “Speckle-correlation imaging through scattering media with hybrid bispectrum-iteration algorithm,” Optical Engineering, vol. 56, no. 12, Art. no. 12, 2017, doi: 10.1117/1.OE.56.12.123102.
    10. B. Frank et al., “Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface,” Science Advances, vol. 3, no. 7, Art. no. 7, Jul. 2017, doi: 10.1126/sciadv.1700721.
    11. B. Bilski, K. Frenner, and W. Osten, “Effective–CD: a contribution toward the consideration of line edge roughness in the scatterometric critical dimension metrology,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 16, no. 2, Art. no. 2, 2017, doi: 10.1117/1.JMM.16.2.024002.
    12. D. Claus, G. Pedrini, and W. Osten, “Iterative phase retrieval based on variable wavefront curvature,” Appl. Opt., vol. 56, no. 13, Art. no. 13, May 2017, doi: 10.1364/AO.56.00F134.
    13. A. K. Singh, G. Pedrini, M. Takeda, and W. Osten, “Scatter-plate microscope for lensless microscopy with diffraction limited resolution,” Scientific Reports, vol. 7, no. 1, Art. no. 1, Sep. 2017, doi: 10.1038/s41598-017-10767-3.
    14. A. Bielke, C. Pruss, and W. Osten, “Design of a variable diffractive zoom lens for interferometric purposes,” Optical Engineering, vol. 56, no. 1, Art. no. 1, 2017, doi: 10.1117/1.OE.56.1.014104.
    15. D. Claus et al., “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” Journal of Medical Imaging, vol. 4, no. 1, Art. no. 1, 2017, doi: 10.1117/1.JMI.4.1.014505.
  9. 2016

    1. D. Khodadad, A. K. Singh, G. Pedrini, and M. Sjödahl, “Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation,” Appl. Opt., vol. 55, no. 27, Art. no. 27, Sep. 2016, doi: 10.1364/AO.55.007735.
    2. S. Peterhänsel, M. L. Gödecke, K. Frenner, and W. Osten, “Phase-structured illumination as a tool to detect nanometer asymmetries,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 15, no. 4, Art. no. 4, 2016, doi: 10.1117/1.JMM.15.4.044005.
    3. Y. Huang et al., “Absolute test for cylindrical surfaces using the conjugate differential method,” Optical Engineering, vol. 55, no. 11, Art. no. 11, 2016, doi: 10.1117/1.OE.55.11.114104.
    4. P. Weidmann et al., “Evaluation of Residual Stress Determinations Conducted with Laser Ablation and Optical Displacement Measurement,” in Residual Stresses 2016, in Residual Stresses 2016. Materials Research Forum LLC, Dec. 2016. doi: 10.21741/9781945291173-55.
    5. G. Pedrini et al., “Residual Stress Analysis of Ceramic Coating by Laser Ablation and Digital Holography,” Experimental Mechanics, vol. 56, no. 5, Art. no. 5, Jun. 2016, doi: 10.1007/s11340-015-0120-3.
    6. M. Eckerle et al., “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Optics Letters, vol. 41, no. 7, Art. no. 7, Apr. 2016, doi: 10.1364/ol.41.001680.
    7. C. Lingel, T. Haist, and W. Osten, “Spatial-light-modulator-based adaptive optical system for the use of multiple phase retrieval methods,” Appl. Opt., vol. 55, no. 36, Art. no. 36, Dec. 2016, doi: 10.1364/AO.55.010329.
    8. P. Weidmann, U. Weber, S. Schmauder, G. Pedrini, and W. Osten, “Numerical calculation of temperature and surface topology during a laser ablation process for ceramic coatings,” Meccanica, vol. 51, no. 2, Art. no. 2, Feb. 2016, doi: 10.1007/s11012-015-0220-2.
    9. G. Pedrini et al., “Analyse von Eigenspannungen in beschichteten Oberflächen durch Laser-Ablation und digitale Holographie,” in Form- und Konturmesstechnik 2016, in Form- und Konturmesstechnik 2016. , VDI Verlag, 2016, pp. 77--86. doi: 10.51202/9783181022856-77.
    10. A. K. Singh, G. Pedrini, X. Peng, and W. Osten, “Nanoscale measurement of in-plane and out-of-plane displacements of microscopic object by sensor fusion,” Optical Engineering, vol. 55, no. 12, Art. no. 12, 2016, doi: 10.1117/1.OE.55.12.121722.
    11. J. Schindler, P. Schau, N. Brodhag, K. Frenner, and W. Osten, “Retrieving the axial position of fluorescent light emitting spots by shearing interferometry,” Journal of Biomedical Optics, vol. 21, no. 12, Art. no. 12, 2016, doi: 10.1117/1.JBO.21.12.125009.
    12. A. Siller, C. Pruß, D. Hopp, and W. Osten, “Neuer Sensor zur exakten Bestimmung von Drehwinkeln,” MTZ - Motortechnische Zeitschrift, vol. 77, no. 4, Art. no. 4, Apr. 2016, doi: 10.1007/s35146-016-0012-9.
    13. M. Takeda, A. K. Singh, D. N. Naik, G. Pedrini, and W. Osten, “Holographic Correloscopy—Unconventional Holographic Techniques For Imaging a Three-Dimensional Object Through an Opaque Diffuser or Via a Scattering Wall: A Review,” IEEE Transactions on Industrial Informatics, vol. 12, no. 4, Art. no. 4, Aug. 2016, doi: 10.1109/TII.2015.2503641.
    14. A. Siller, C. Pruß, D. Hopp, and W. Osten, “Novel Sensor for Accurate Measurement of Rotary Angles,” MTZ worldwide, vol. 77, no. 4, Art. no. 4, Apr. 2016, doi: 10.1007/s38313-016-0009-2.
    15. E. Zschau and S. Reichelt, “Head- and Eye-Tracking Solutions for Autostereoscopic and Holographic 3D Displays,” in Handbook of Visual Display Technology, J. Chen, W. Cranton, and M. Fihn, Eds., in Handbook of Visual Display Technology. , Cham: Springer International Publishing, 2016, pp. 2625--2649. doi: 10.1007/978-3-319-14346-0_114.
    16. L. Fu et al., “Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry,” Opt. Express, vol. 24, no. 24, Art. no. 24, Nov. 2016, doi: 10.1364/OE.24.028056.
    17. A. Keck, O. Sawodny, M. Gronle, T. Haist, and W. Osten, “Active Compensation of Dynamic Errors in a Coordinate-Measuring Machine,” IFAC-PapersOnLine, vol. 49, no. 21, Art. no. 21, 2016, doi: 10.1016/j.ifacol.2016.10.672.
  10. 2015

    1. A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. den Boef, and W. Osten, “Phase-sensitive structured illumination to detect nanosized asymmetries in silicon trenches,” Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 14, no. 2, Art. no. 2, 2015, doi: 10.1117/1.JMM.14.2.021104.
    2. T. Haist and W. Osten, “Holography using pixelated spatial light modulators—part 1: theory and basic considerations,” Journal of Micro/Nanolithography, MEMS …, 2015, [Online]. Available: https://www.spiedigitallibrary.org/journals/Journal-of-MicroNanolithography-MEMS-and-MOEMS/volume-14/issue-4/041310/Holography-using-pixelated-spatial-light-modulatorspart-1--theory-and/10.1117/1.JMM.14.4.041310.short
    3. J. Zheng, G. Pedrini, P. Gao, B. Yao, and W. Osten, “Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination,” Journal of Optics, vol. 17, no. 8, Art. no. 8, Jul. 2015, doi: 10.1088/2040-8978/17/8/085301.
    4. M. Hasler, J. Stahl, T. Haist, and W. Osten, “Object field expansion in spatial light modulator-based phase contrast microscopy,” Optical Engineering, 2015, [Online]. Available: https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-54/issue-4/043107/Object-field-expansion-in-spatial-light-modulator-based-phase-contrast/10.1117/1.OE.54.4.043107.short
    5. D. Buchta, N. Hein, G. Pedrini, C. Krekel, and W. Osten, “Artwork Inspection by Shearography with Adapted Loading,” Experimental Mechanics, vol. 55, no. 9, Art. no. 9, Nov. 2015, doi: 10.1007/s11340-015-0070-9.
    6. S. Peterhänsel, M. L. Gödecke, V. F. Paz, K. Frenner, and W. Osten, “Detection of overlay error in double patterning gratings using phase-structured illumination,” Opt. Express, vol. 23, no. 19, Art. no. 19, Sep. 2015, doi: 10.1364/OE.23.024246.
    7. T. Haist, A. Peter, and W. Osten, “Holographic projection with field-dependent aberration correction,” Optics Express, vol. 23, no. 5, Art. no. 5, Feb. 2015, doi: 10.1364/oe.23.005590.
    8. T. Haist, M. Gronle, D. Bui, and W. Osten, “Holografische mehrpunktgenerierung zur positionsanalyse,” tm-Technisches Messen, 2015, [Online]. Available: https://www.degruyter.com/view/j/teme.2015.82.issue-5/teme-2014-0039/teme-2014-0039.xml
    9. T. Haist and W. Osten, “Holography using pixelated spatial light modulators—Part 2: applications,” Journal of Micro/Nanolithography, MEMS …, 2015, [Online]. Available: https://www.spiedigitallibrary.org/journals/Journal-of-MicroNanolithography-MEMS-and-MOEMS/volume-14/issue-4/041311/Holography-using-pixelated-spatial-light-modulatorsPart-2-applications/10.1117/1.JMM.14.4.041311.short
    10. T. Haist, M. Gronle, D. A. Bui, and W. Osten, “Holographic multipoint generation for sensing positions,” TM-TECHNISCHES MESSEN, vol. 82, no. 5, Art. no. 5, 2015.
  11. 2014

    1. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Looking through a diffuser and around an opaque surface: A holographic approach,” Optics Express, vol. 22, no. 7, Art. no. 7, Mar. 2014, doi: 10.1364/oe.22.007694.
    2. A. Anand et al., “Single beam Fourier transform digital holographic quantitative phase microscopy,” Applied Physics Letters, vol. 104, no. 10, Art. no. 10, Mar. 2014, doi: 10.1063/1.4868533.
    3. M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, and J. Wrachtrup, “Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling,” Review of Scientific Instruments, vol. 85, no. 12, Art. no. 12, Dec. 2014, doi: 10.1063/1.4902818.
    4. W. Osten et al., “Recent advances in digital holography Invited,” Applied Optics, vol. 53, no. 27, Art. no. 27, Jul. 2014, doi: 10.1364/ao.53.000g44.
    5. P. Gao, G. Pedrini, C. Zuo, and W. Osten, “Phase retrieval using spatially modulated illumination,” Optics Letters, vol. 39, no. 12, Art. no. 12, Jun. 2014, doi: 10.1364/ol.39.003615.
    6. J. Stumpe et al., “Active and Passive LC Based Polarization Elements,” Molecular Crystals and Liquid Crystals, vol. 594, no. 1, Art. no. 1, May 2014, doi: 10.1080/15421406.2014.917503.
    7. M. Hasler, T. Haist, and W. Osten, “Programmable microscopy,” Fringe 2013, 2014, [Online]. Available: https://link.springer.com/content/pdf/10.1007/978-3-642-36359-7_66.pdf
    8. S. Peterhänsel, C. Pruss, and W. Osten, “Limits of diffractometric reconstruction of line gratings when using scalar diffraction theory,” Optics Letters, vol. 39, no. 13, Art. no. 13, Jun. 2014, doi: 10.1364/ol.39.003764.
    9. V. Mart\’ınez-Garc\’ıa, M. Wenzelburger, A. Killinger, G. Pedrini, R. Gadow, and W. Osten, “Residual Stress Measurement with Laser-Optical and Mechanical Methods,” in Residual Stresses IX, in Residual Stresses IX, vol. 996. Trans Tech Publications Ltd, Oct. 2014, pp. 256--261. doi: 10.4028/www.scientific.net/AMR.996.256.
    10. G. Baer, J. Schindler, C. Pruss, J. Siepmann, and W. Osten, “Fast and Flexible Non-Null Testing of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” International Journal of Optomechatronics, vol. 8, no. 4, Art. no. 4, Oct. 2014, doi: 10.1080/15599612.2014.942925.
    11. A. K. Singh, A. Faridian, P. Gao, G. Pedrini, and W. Osten, “Quantitative phase imaging using a deep UV LED source,” Optics Letters, vol. 39, no. 12, Art. no. 12, Jun. 2014, doi: 10.1364/ol.39.003468.
    12. A. Berrier, B. Gompf, L. Fu, T. Weiss, and H. Schweizer, “Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy,” Phys. Rev. B, vol. 89, no. 19, Art. no. 19, May 2014, doi: 10.1103/PhysRevB.89.195434.
    13. S. Peterhänsel et al., “Solving the inverse grating problem with the naked eye,” Optics Letters, vol. 39, no. 12, Art. no. 12, Jun. 2014, doi: 10.1364/ol.39.003547.
    14. T. Haist, C. Lingel, R. Adler, and W. Osten, “Parallelized genetic optimization of spatial light modulator addressing for diffractive applications,” Applied Optics, vol. 53, no. 7, Art. no. 7, Feb. 2014, doi: 10.1364/ao.53.001413.
    15. A. Faridian, G. Pedrini, and W. Osten, “Opposed-view dark-field digital holographic microscopy,” Biomedical Optics Express, vol. 5, no. 3, Art. no. 3, Feb. 2014, doi: 10.1364/boe.5.000728.
    16. T. Haist, S. Dong, T. Arnold, M. Gronle, and W. Osten, “Multi-image position detection,” Optics Express, vol. 22, no. 12, Art. no. 12, Jun. 2014, doi: 10.1364/oe.22.014450.
    17. D. N. Naik, G. Pedrini, M. Takeda, and W. Osten, “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Optics Letters, vol. 39, no. 7, Art. no. 7, Mar. 2014, doi: 10.1364/ol.39.001857.
    18. L. Fu, K. Frenner, and W. Osten, “Rigorous speckle simulation using surface integral equations and higher order boundary element method,” Optics Letters, vol. 39, no. 14, Art. no. 14, Jul. 2014, doi: 10.1364/ol.39.004104.
    19. G. Baer, J. Schindler, C. Pruss, J. Siepmann, and W. Osten, “Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces,” Optics Express, vol. 22, no. 25, Art. no. 25, Dec. 2014, doi: 10.1364/oe.22.031200.
  12. 2013

    1. T. Haist et al., “Multipoint vibrometry with dynamic and static holograms,” Review of Scientific Instruments, vol. 84, no. 12, Art. no. 12, Dec. 2013, doi: 10.1063/1.4845596.
    2. C. Lingel, T. Haist, and W. Osten, “Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect,” Applied optics, 2013, [Online]. Available: https://www.osapublishing.org/abstract.cfm?uri=ao-52-28-6877
To the top of the page