Reviewed Papers

Auf dieser Seite finden sie die reviewed Papers des ITO.

Publications

  1. 2022

    1. M. A. Ahmed u. a., „High-power thin-disk lasers emitting beams with axially-symmetric polarizations“, Nanophotonics, Bd. 11, Nr. 4, Art. Nr. 4, 2022, doi: doi:10.1515/nanoph-2021-0606.
    2. V. Aslani, F. Guerra, A. Steinitz, P. Wilhelm, und T. Haist, „Averaging approaches for highly accurate image-based edge localization“, Optics Continuum, Bd. 1, Nr. 4, Art. Nr. 4, Apr. 2022, doi: 10.1364/optcon.453537.
    3. L. Becker u. a., „Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids“, International Journal of Molecular Sciences, Bd. 23, Nr. 13, Art. Nr. 13, 2022, doi: 10.3390/ijms23136956.
    4. R. Beisswanger, M. Weckerle, C. Pruss, und S. Reichelt, „Interferometric radius of curvature measurements: an environmental error treatment“, Optics Express, Bd. 30, Nr. 14, Art. Nr. 14, Juli 2022, doi: 10.1364/oe.461972.
    5. L. Bremer u. a., „Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots“, Optics Express, Bd. 30, Nr. 10, Art. Nr. 10, Apr. 2022, doi: 10.1364/oe.456777.
    6. A. Faulhaber, C. Krächan, und T. Haist, „Depth from axial differential perspective“, Optics Continuum, Bd. 1, Nr. 1, Art. Nr. 1, Jan. 2022, doi: 10.1364/optcon.451413.
    7. A. Gronle, C. Pruss, und A. Herkommer, „Misalignment of spheres, aspheres and freeforms in optical measurement systems“, Optics Express, Bd. 30, Nr. 2, Art. Nr. 2, Jan. 2022, doi: 10.1364/oe.443420.
    8. F. Guerra, P. Wilhelm, und T. Haist, „Holographic Wide-Angle System for Deformation Measurement of Extended Structures“, Optics, Bd. 3, Nr. 1, Art. Nr. 1, 2022, doi: 10.3390/opt3010010.
    9. R. Hahn, T. Haist, K. Michel, und W. Osten, „Diffraction-based hyperspectral snapshot imager“, Optical Engineering, Bd. 61, Nr. 1, Art. Nr. 1, 2022, doi: 10.1117/1.OE.61.1.015106.
    10. S. Hartlieb, C. Schober, T. Haist, und S. Reichelt, „Accurate single image depth detection using multiple rotating point spread functions“, Optics Express, Bd. 30, Nr. 13, Art. Nr. 13, Mai 2022, doi: 10.1364/oe.458541.
    11. A. Kumar u. a., „Emission spectroscopy of NaYF4:Eu nanorods optically trapped by Fresnel lens fibers“, Photonics Research, Bd. 10, Nr. 2, Art. Nr. 2, Jan. 2022, doi: 10.1364/prj.434645.
    12. J. Li u. a., „3D-Printed Micro Lens-in-Lens for In Vivo Multimodal Microendoscopy“, Small, Bd. 18, Nr. 17, Art. Nr. 17, März 2022, doi: 10.1002/smll.202107032.
    13. M. Ringkowski, E. Arnold, S. Hartlieb, T. Haist, W. Osten, und O. Sawodny, „Precision tracking control of a dual-stage measuring machine“, at - Automatisierungstechnik, Bd. 70, Nr. 7, Art. Nr. 7, 2022, doi: doi:10.1515/auto-2021-0165.
    14. C. Schober, R. Beisswanger, A. Gronle, C. Pruss, und W. Osten, „Tilted Wave Fizeau Interferometer for flexible and robust asphere and freeform testing“, Light: Advanced Manufacturing, Bd. 3, Nr. 48, Art. Nr. 48, 2022, doi: 10.37188/lam.2022.048.
    15. C. Schober, C. Pruss, und A. Herkommer, „Ereignisbasierte Weißlichtinterferometrie (eCSI)“, tm - Technisches Messen, Bd. 89, Nr. 6, Art. Nr. 6, 2022, doi: doi:10.1515/teme-2021-0130.
    16. J. Schwab u. a., „Coupling light emission of single-photon sources into single-mode fibers: mode matching, coupling efficiencies, and thermo-optical effects“, Optics Express, Bd. 30, Nr. 18, Art. Nr. 18, Aug. 2022, doi: 10.1364/oe.465101.
    17. A. Toulouse u. a., „Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design“, Optics Express, Bd. 30, Nr. 2, Art. Nr. 2, Jan. 2022, doi: 10.1364/oe.439963.
    18. A. Toulouse u. a., „High resolution femtosecond direct laser writing with wrapped lens“, Optical Materials Express, Bd. 12, Nr. 9, Art. Nr. 9, Sep. 2022, doi: 10.1364/ome.468534.
    19. M. Wende, J. Drozella, A. Toulouse, und A. M. Herkommer, „Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method“, Optics Express, Bd. 30, Nr. 22, Art. Nr. 22, Okt. 2022, doi: 10.1364/oe.469178.
    20. M. Zimmermann, S. Amann, M. Mel, T. Haist, und A. Gatto, „Deep learning-based hyperspectral image reconstruction from emulated and real computed tomography imaging spectrometer data“, Optical Engineering, Bd. 61, Nr. 5, Art. Nr. 5, 2022, doi: 10.1117/1.OE.61.5.053103.
  2. 2021

    1. Y. Arezki u. a., „Traceable Reference Full Metrology Chain for Innovative Aspheric and Freeform Optical Surfaces Accurate at the Nanometer Level“, Sensors, Bd. 21, Nr. 4, Art. Nr. 4, 2021, doi: 10.3390/s21041103.
    2. F. Beirow u. a., „Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures“, OSA Continuum, Bd. 4, Nr. 2, Art. Nr. 2, Feb. 2021, doi: 10.1364/OSAC.414100.
    3. F. Glöckler, F. Hausladen, I. Alekseenko, A. Gröger, G. Pedrini, und D. Claus, „Two-photon-polymerization enabled and enhanced multi-channel fibre switch“, Engineering Research Express, Bd. 3, Nr. 4, Art. Nr. 4, Nov. 2021, doi: 10.1088/2631-8695/ac34c5.
    4. M. L. Gödecke, K. Frenner, und W. Osten, „Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry“, Light: Advanced Manufacturing, Bd. 2, Nr. 2, Art. Nr. 2, 2021, doi: 10.37188/lam.2021.018.
    5. S. Hartlieb, M. Ringkowski, T. Haist, O. Sawodny, und W. Osten, „Multi-positional image-based vibration measurement by holographic image replication“, Light: Advanced Manufacturing, Bd. 2, Nr. 4, Art. Nr. 4, 2021, doi: 10.37188/lam.2021.032.
    6. S. Hartlieb u. a., „Highly accurate imaging based position measurement using holographic point replication“, Measurement, Bd. 172, S. 108852, Feb. 2021, doi: 10.1016/j.measurement.2020.108852.
    7. B. Javidi u. a., „Roadmap on digital holography Invited“, Optics Express, Bd. 29, Nr. 22, Art. Nr. 22, Okt. 2021, doi: 10.1364/oe.435915.
    8. M. Joglekar u. a., „Compact, low cost, large field-of-view self-referencing digital holographic interference microscope“, Optik, Bd. 245, S. 167615, Nov. 2021, doi: 10.1016/j.ijleo.2021.167615.
    9. S. Ludwig, G. Pedrini, X. Peng, und W. Osten, „Single-pixel scatter-plate microscopy“, Optics Letters, Bd. 46, Nr. 10, Art. Nr. 10, 2021, doi: https://doi.org/10.1364/OL.420593.
    10. S. Ludwig, P. Ruchka, G. Pedrini, X. Peng, und W. Osten, „Scatter-plate microscopy with spatially coherent illumination and temporal scatter modulation“, Opt. Express, Bd. 29, Nr. 3, Art. Nr. 3, Feb. 2021, doi: 10.1364/OE.412047.
    11. Z. Meng, G. Pedrini, X. Lv, J. Ma, S. Nie, und C. Yuan, „DL-SI-DHM : a deep network generating the high-resolution phase and amplitude images from wide-field images“, Optics Express, Bd. 29, Nr. 13, Art. Nr. 13, Juni 2021, doi: 10.1364/oe.424718.
    12. H. Pang, T. Haist, und T. Haecker, „Absorption of tailored laser beams within 3D laser cutting kerfs“, Journal of Laser Applications, Bd. 33, Nr. 3, Art. Nr. 3, 2021, doi: 10.2351/7.0000408.
    13. G. Pedrini und D. Claus, „Phase retrieval using bidirectional interference“, Applied Optics, Bd. 60, Nr. 12, Art. Nr. 12, Apr. 2021, doi: 10.1364/ao.415927.
    14. G. Pedrini und D. Claus, „Phase retrieval using 3D Fourier transforms of volume diffraction pattern“, Optics Letters, Bd. 46, Nr. 7, Art. Nr. 7, März 2021, doi: 10.1364/ol.419676.
    15. K. Prause, A. Herkommer, B. R. Pinzer, und M. Layh, „Single-shot high speed aerial chromatic confocal metrology sensor“, Optical Engineering, Bd. 60, Nr. 12, Art. Nr. 12, 2021, doi: 10.1117/1.OE.60.12.124110.
    16. F. Reichenzer, M. Schneider, und A. Herkommer, „Correction to: Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds“, Experiments in Fluids, Bd. 62, Nr. 11, Art. Nr. 11, Okt. 2021, doi: 10.1007/s00348-021-03321-5.
    17. C. C. Reichert u. a., „Evaluation and comparison of different materials for manufacturing of transparent optical components in additive manufacturing“, Optical Engineering, Bd. 60, Nr. 6, Art. Nr. 6, 2021, doi: 10.1117/1.OE.60.6.067103.
    18. M. Schmid, F. Sterl, S. Thiele, A. Herkommer, und H. Giessen, „3D printed hybrid refractive/diffractive achromat and apochromat for the visible wavelength range“, Optics Letters, Bd. 46, Nr. 10, Art. Nr. 10, Mai 2021, doi: 10.1364/ol.423196.
    19. C. Schober, C. Pruß, A. Faulhaber, und A. Herkommer, „Event based coherence scanning interferometry“, Optics letters, Bd. 46, Nr. 17, Art. Nr. 17, 2021, doi: 10.1364/OL.437489.
    20. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, und A. Herkommer, „3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint“, Light: Advanced Manufacturing, Bd. 2, Nr. 1, Art. Nr. 1, 2021, doi: 10.37188/lam.2021.002.
  3. 2020

    1. I. Alekseenko u. a., „Residual Stress Evaluation in Ceramic Coating Under Industrial Conditions by Digital Holography“, IEEE Transactions on Industrial Informatics, Bd. 16, Nr. 2, Art. Nr. 2, Feb. 2020, doi: 10.1109/TII.2019.2939972.
    2. Z. Cai, J. Chen, G. Pedrini, W. Osten, X. Liu, und X. Peng, „Lensless light-field imaging through diffuser encoding“, Light: Science & Applications, Bd. 9, Nr. 1, Art. Nr. 1, Aug. 2020, doi: 10.1038/s41377-020-00380-x.
    3. Z. Cai, X. Liu, G. Pedrini, W. Osten, und X. Peng, „Structured-light-field 3D imaging without phase unwrapping“, Optics and Lasers in Engineering, Bd. 129, S. 106047, Juni 2020, doi: 10.1016/j.optlaseng.2020.106047.
    4. Z. Cai, X. Liu, G. Pedrini, W. Osten, und X. Peng, „Light-field depth estimation considering plenoptic imaging distortion“, Opt. Express, Bd. 28, Nr. 3, Art. Nr. 3, Feb. 2020, doi: 10.1364/OE.385285.
    5. Z. Cai, G. Pedrini, W. Osten, X. Liu, und X. Peng, „Single-shot structured-light-field three-dimensional imaging“, Opt. Lett., Bd. 45, Nr. 12, Art. Nr. 12, Juni 2020, doi: 10.1364/OL.393911.
    6. I. Fortmeier u. a., „Round robin comparison study on the form measurement of optical freeform surfaces“, Journal of the European Optical Society-Rapid Publications, Bd. 16, Nr. 1, Art. Nr. 1, Jan. 2020, doi: 10.1186/s41476-019-0124-1.
    7. Y. Ganjkhani, A. Calabuig, G. Pedrini, und A.-R. Moradi, „Oblique illumination lateral shearing digital holographic microscopy“, Journal of Optics, Bd. 22, Nr. 9, Art. Nr. 9, Juli 2020, doi: 10.1088/2040-8986/aba4c0.
    8. F. Guerra, T. Haist, A. Warsewa, S. Hartlieb, W. Osten, und C. Tarin, „Precise building deformation measurement using holographic multipoint replication“, Appl. Opt., Bd. 59, Nr. 9, Art. Nr. 9, März 2020, doi: 10.1364/AO.385594.
    9. M. L. Gödecke, C. M. Bett, D. Buchta, K. Frenner, und W. Osten, „Optical sensor design for fast and process-robust position measurements on small diffraction gratings“, Optics and Lasers in Engineering, Bd. 134, S. 106267, Nov. 2020, doi: 10.1016/j.optlaseng.2020.106267.
    10. R. Hahn u. a., „Detailed characterization of a mosaic based hyperspectral snapshot imager“, Optical Engineering, Bd. 59, Nr. 12, Art. Nr. 12, Dez. 2020, doi: 10.1117/1.oe.59.12.125102.
    11. S. Hartlieb u. a., „Hochgenaue Kalibrierung eines holografischen Multi-Punkt-Positionsmesssystems“, tm - Technisches Messen / De Gruyter Oldenbourg, Bd. 87, Nr. Heft 7-8, Art. Nr. Heft 7-8, 2020, doi: https://doi.org/10.1515/teme-2019-0153.
    12. J. Li, Q. Zhang, L. Zhong, J. Tian, G. Pedrini, und X. Lu, „Quantitative phase imaging in dual-wavelength interferometry using a single wavelength illumination and deep learning“, Optics Express, Bd. 28, Nr. 19, Art. Nr. 19, Sep. 2020, doi: 10.1364/oe.402808.
    13. J. Li u. a., „Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use“, Light: Science & Applications, Bd. 9, Nr. 1, Art. Nr. 1, Juli 2020, doi: 10.1038/s41377-020-00365-w.
    14. D. Lu, M. Liao, W. He, G. Pedrini, W. Osten, und X. Peng, „Tracking moving object beyond the optical memory effect“, Optics and Lasers in Engineering, Bd. 124, S. 105815, Jan. 2020, doi: 10.1016/j.optlaseng.2019.105815.
    15. Z. Meng u. a., „Numerical dark-field imaging using deep-learning“, Opt. Express, Bd. 28, Nr. 23, Art. Nr. 23, Nov. 2020, doi: 10.1364/OE.401786.
    16. J. Ornik u. a., „Repeatability of material parameter extraction of liquids from transmission terahertz time-domain measurements“, Opt. Express, Bd. 28, Nr. 19, Art. Nr. 19, Sep. 2020, doi: 10.1364/OE.403159.
    17. H. Pang, T. Haecker, A. Bense, T. Haist, und D. Flamm, „Focal field analysis of highly multi-mode fiber beams based on modal decomposition“, Applied Optics, Bd. 59, Nr. 22, Art. Nr. 22, Juli 2020, doi: 10.1364/ao.397498.
    18. K. Prause, S. Thiele, A. M. Herkommer, H. Giessen, B. Pinzer, und M. Layh, „Highly miniaturized endoscopic spatial confocal point distance sensor“, Optical Engineering, Bd. 59, Nr. 3, Art. Nr. 3, 2020, doi: 10.1117/1.OE.59.3.035102.
    19. C. C. Reichert, T. Gruhonjic, und A. M. Herkommer, „Development of an open source algorithm for optical system design, combining genetic and local optimization“, Optical Engineering, Bd. 59, Nr. 5, Art. Nr. 5, 2020, doi: 10.1117/1.OE.59.5.055111.
    20. S. Ristok u. a., „Mass-producible micro-optical elements by injection compression molding and focused ion beam structured titanium molding tools“, Optics Letters, Bd. 45, Nr. 5, Art. Nr. 5, Feb. 2020, doi: 10.1364/ol.385599.
    21. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, und H. Giessen, „Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components“, Opt. Mater. Express, Bd. 10, Nr. 10, Art. Nr. 10, Okt. 2020, doi: 10.1364/OME.401724.
    22. S. Schmidt u. a., „Tailored micro-optical freeform holograms for integrated complex beam shaping“, Optica, Bd. 7, Nr. 10, Art. Nr. 10, Okt. 2020, doi: 10.1364/OPTICA.395177.
    23. R. Su u. a., „Lens aberration compensation in interference microscopy“, Optics and Lasers in Engineering, Bd. 128, S. 106015, 2020, doi: https://doi.org/10.1016/j.optlaseng.2020.106015.
    24. F. Wang u. a., „Phase imaging with an untrained neural network“, Light: Science & Applications, Bd. 9, Nr. 1, Art. Nr. 1, Mai 2020, doi: 10.1038/s41377-020-0302-3.
    25. A. Warsewa u. a., „Self-tuning state estimation for adaptive truss structures using strain gauges and camera-based position measurements“, Mechanical Systems and Signal Processing, Bd. 143, S. 106822, Sep. 2020, doi: 10.1016/j.ymssp.2020.106822.
    26. K. Weber, Z. Wang, S. Thiele, A. Herkommer, und H. Giessen, „Distortion-free multi-element Hypergon wide-angle micro-objective obtained by femtosecond 3D printing“, Optics Letters, Bd. 45, Nr. 10, Art. Nr. 10, Mai 2020, doi: 10.1364/ol.392253.
    27. K. Weber u. a., „Tailored nanocomposites for 3D printed micro-optics“, Optical Materials Express, Bd. 10, Nr. 10, Art. Nr. 10, Sep. 2020, doi: 10.1364/ome.399392.
  4. 2019

    1. A. Asadollahbaik u. a., „Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses“, ACS Photonics, Bd. 7, Nr. 1, Art. Nr. 1, Okt. 2019, doi: 10.1021/acsphotonics.9b01024.
    2. Z. Cai, X. Liu, G. Pedrini, W. Osten, und X. Peng, „Unfocused plenoptic metric modeling and calibration“, Opt. Express, Bd. 27, Nr. 15, Art. Nr. 15, Juli 2019, doi: 10.1364/OE.27.020177.
    3. Z. Cai, X. Liu, G. Pedrini, W. Osten, und X. Peng, „Accurate depth estimation in structured light fields“, Opt. Express, Bd. 27, Nr. 9, Art. Nr. 9, Apr. 2019, doi: 10.1364/OE.27.013532.
    4. F. Duerr und A. Herkommer, „Why does interdisciplinary research matter?“, Advanced Optical Technologies, Bd. 8, Nr. 2, Art. Nr. 2, 2019, doi: doi:10.1515/aot-2019-0026.
    5. T. Haist, C. Reichert, F. Würtenberger, L. Lachenmaier, und A. Faulhaber, „Camera-based measurement of vital signs“, Technisches Messen, Bd. 86, Nr. 7–8, Art. Nr. 7–8, 2019, doi: 10.1515/teme-2019-0019.
    6. T. Haist, C. Reichert, F. Würtenberger, L. Lachenmaier, und A. Faulhaber, „Kamerabasierte Erfassung von Vitalparametern“, tm-Technisches Messen, 2019, doi: 10.1515/teme-2019-0019.
    7. J. Krauter, J. Stark, und W. Osten, „Topography measurement on disguised microelectromechanical systems using short coherence interferometry“, TM-Technisches Messen, Bd. 86, Nr. 6, Art. Nr. 6, 2019, doi: 10.1515/teme-2019-0018.
    8. M. Liao, D. Lu, W. He, G. Pedrini, W. Osten, und X. Peng, „Improving reconstruction of speckle correlation imaging by using a modified phase retrieval algorithm with the number of nonzero-pixels constraint“, Appl. Opt., Bd. 58, Nr. 2, Art. Nr. 2, Jan. 2019, doi: 10.1364/AO.58.000473.
    9. S. Ludwig, B. L. Teurnier, G. Pedrini, X. Peng, und W. Osten, „Image reconstruction and enhancement by deconvolution in scatter-plate microscopy“, Opt. Express, Bd. 27, Nr. 16, Art. Nr. 16, Aug. 2019, doi: 10.1364/OE.27.023049.
    10. G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, und W. Osten, „Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the International Thermonuclear Experimental Reactor tokamak ınvited“, Appl. Opt., Bd. 58, Nr. 5, Art. Nr. 5, Feb. 2019, doi: 10.1364/AO.58.00A147.
    11. F. Reichenzer, S. Dörr, und A. Herkommer, „Transient simulation of laser beam propagation through turbulent cutting gas flow“, Advanced Optical Technologies, Bd. 8, Nr. 2, Art. Nr. 2, 2019, doi: doi:10.1515/aot-2018-0070.
    12. J. Ritter, N. Ma, W. Osten, M. Takeda, und W. Wang, „Depolarizing surface scattering by a birefringent material with rough surface“, Optics Communications, Bd. 430, S. 456--460, Jan. 2019, doi: 10.1016/j.optcom.2018.08.048.
    13. M. Roeder u. a., „Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding“, Journal of Manufacturing Processes, Bd. 47, S. 402--409, Nov. 2019, doi: 10.1016/j.jmapro.2019.10.012.
    14. J. Schindler, C. Pruss, und W. Osten, „Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry“, Optical Engineering, Bd. 58, Nr. 7, Art. Nr. 7, 2019, doi: 10.1117/1.OE.58.7.074105.
    15. I. Shevkunov, V. Katkovnik, D. Claus, G. Pedrini, N. V. Petrov, und K. Egiazarian, „Spectral Object Recognition in Hyperspectral Holography with Complex-Domain Denoising“, Sensors, Bd. 19, Nr. 23, Art. Nr. 23, Nov. 2019, doi: 10.3390/s19235188.
    16. S. Thiele, C. Pruss, A. M. Herkommer, und H. Giessen, „3D Printed Stacked Diffractive Microlenses“, Optics Express, Bd. 27, Nr. 24, Art. Nr. 24, 2019, doi: 10.1364/OE.27.035621.
    17. F. Würtenberger, T. Haist, C. Reichert, A. Faulhaber, T. Böttcher, und A. Herkommer, „Optimum wavelengths in the near infrared for imaging photoplethysmography“, IEEE Transactions on Biomedical Engineering, 2019, doi: 10.1109/TBME.2019.2897284.
  5. 2018

    1. E. Achimova, V. Abaskin, D. Claus, G. Pedrini, I. Shevkunov, und V. Katkovnik, „Noise minimised high resolution digital holographic microscopy applied to surface topography“, Computer Optics, Bd. 42, Nr. 2, Art. Nr. 2, Juli 2018, doi: 10.18287/2412-6179-2018-42-2-267-272.
    2. E. Achimova, V. Abaskin, D. Claus, G. Pedrini, I. Shevkunov, und V. Katkovnik, „Noise minimized high resolution digital holographic microscopy applied to surface topography“, Computer Optics, Bd. 42, S. 267–272, März 2018, doi: 10.18287/2412-6179-2018-42-2-267-272.
    3. D. Buchta, C. Heinemann, G. Pedrini, C. Krekel, und W. Osten, „Combination of FEM simulations and shearography for defect detection on artwork“, STRAIN, Bd. 54, Nr. 3, Art. Nr. 3, Juni 2018, doi: 10.1111/str.12269.
    4. D. Buchta, H. Serbes, D. Claus, G. Pedrini, und W. Osten, „Soft tissue elastography via shearing interferometry“, JOURNAL OF MEDICAL IMAGING, Bd. 5, Nr. 4, Art. Nr. 4, Okt. 2018, doi: 10.1117/1.JMI.5.4.046001.
    5. Z. Cai u. a., „Light-field-based absolute phase unwrapping“, Opt. Lett., Bd. 43, Nr. 23, Art. Nr. 23, Dez. 2018, doi: 10.1364/OL.43.005717.
    6. V. Cazac u. a., „Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography“, Appl. Opt., Bd. 57, Nr. 3, Art. Nr. 3, Jan. 2018, doi: 10.1364/AO.57.000507.
    7. D. Claus, G. Pedrini, D. Buchta, und W. Osten, „Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography“, J. Opt. Soc. Am. A, Bd. 35, Nr. 4, Art. Nr. 4, Apr. 2018, doi: 10.1364/JOSAA.35.000546.
    8. D. Claus, J. Hennenlotter, Q. Liting, G. Pedrini, A. Stenzl, und W. Osten, „Variable Wavefront Curvature Phase Retrieval Compared to Off-Axis Holography and Its Useful Application to Support Intraoperative Tissue Discrimination“, Applied Sciences, Bd. 8, Nr. 11, Art. Nr. 11, Nov. 2018, doi: 10.3390/app8112147.
    9. T. Dietrich u. a., „Thin-disk oscillator delivering radially polarized beams with up to 980 W of CW output power“, Optics Letters, Bd. 43, Nr. 6, Art. Nr. 6, 2018, doi: doi.org/10.1364/OL.43.001371.
    10. A. Keck, O. Sawodny, M. Gronle, T. Haist, und W. Osten, „Model-Based Compensation of Dynamic Errors in Measuring Machines and Machine Tools“, IEEE/ASME Transactions on Mechatronics, Bd. 23, Nr. 5, Art. Nr. 5, Okt. 2018, [Online]. Verfügbar unter: https://ieeexplore.ieee.org/abstract/document/8451952/
    11. J. Krauter und W. Osten, „Nondestructive surface profiling of hidden MEMS by an infrared low-coherence interferometric microscope“, Surface Topography: Metrology and Properties, Bd. 6, Nr. 1, Art. Nr. 1, 2018, doi: 10.1088/2051-672X/aaa0a8.
    12. H. Li, L. Fu, K. Frenner, und W. Osten, „Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength“, Optics Express, Bd. 26, Nr. 15, Art. Nr. 15, 2018, doi: 10.1364/OE.26.019574.
    13. H. Li, L. Fu, K. Frenner, und W. Osten, „Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength“, Optics Express, Bd. 26, Nr. 8, Art. Nr. 8, 2018, doi: 10.1364/OE.26.010888.
    14. F. Schaal u. a., „Optically addressed modulator for tunable spatial polarization control“, Opt. Express, Bd. 26, Nr. 21, Art. Nr. 21, Okt. 2018, doi: 10.1364/OE.26.028119.
    15. R. Schachtschneider u. a., „Interlaboratory comparison measurements of aspheres“, Measurement Science and Technology, Bd. 29, Nr. 5, Art. Nr. 5, 2018, doi: 10.1088/1361-6501/aaae96.
    16. A. Toulouse, S. Thiele, H. Giessen, und A. Herkommer, „Alignment-free integration of apertures and non-transparent hulls into 3D-printed micro-optics“, Opt. Lett., Bd. 43, Nr. 5283, Art. Nr. 5283, 2018, doi: doi.org/10.1364/OL.43.005283.
    17. M. Zhou, A. K. Singh, G. Pedrini, W. Osten, J. Min, und B. Yao, „Tunable output-frequency filter algorithm for imaging through scattering media under LED illumination“, Optics Communications, Bd. 410, S. 160--163, März 2018, doi: 10.1016/j.optcom.2017.10.018.
  6. 2017

    1. P. P. Banerjee, W. Osten, P. Picart, L. Cao, und G. Nehmetallah, „Digital Holography and 3D Imaging: introduction to the joint feature issue in Applied Optics and Journal of the Optical Society of America B“, Appl. Opt., Bd. 56, Nr. 13, Art. Nr. 13, Mai 2017, doi: 10.1364/AO.56.000DH1.
    2. A. Bielke, C. Pruss, und W. Osten, „Design of a variable diffractive zoom lens for interferometric purposes“, Optical Engineering, Bd. 56, Nr. 1, Art. Nr. 1, Jan. 2017, doi: 10.1117/1.oe.56.1.014104.
    3. A. Bielke, C. Pruß, und W. Osten, „Design of a variable diffractive zoom lens for interferometric purposes“, Optical engineering, Bd. 56, Nr. 1, Art. Nr. 1, 2017, doi: 10.1117/1.OE.56.1.014104.
    4. B. Bilski, K. Frenner, und W. Osten, „Effective-CD: A contribution toward the consideration of line edge roughness in the scatterometric critical dimension metrology“, Journal of Micro/Nanolithography, MEMS, and MOEMS, Bd. 16, Nr. 2, Art. Nr. 2, Mai 2017, doi: 10.1117/1.JMM.16.2.024002.
    5. T. Boettcher, M. Gronle, und W. Osten, „Multi-layer topography measurement using a new hybrid single-shot technique: Chromatic Confocal Coherence Tomography (CCCT)“, Opt. Express, Bd. 25, Nr. 9, Art. Nr. 9, Mai 2017, doi: 10.1364/OE.25.010204.
    6. B. Chen und A. Herkommer, „Alternate optical designs for head-mounted displays with a wide field of view“, Applied Optics, Bd. 56, Nr. 4, Art. Nr. 4, Feb. 2017, doi: 10.1364/AO.56.000901.
    7. D. Claus u. a., „Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation (erratum)“, Journal of Medical Imaging, Bd. 4, Nr. 014505, Art. Nr. 014505, Juni 2017, doi: 10.1117/1.JMI.4.2.029801.
    8. D. Claus, G. Pedrini, und W. Osten, „Iterative phase retrieval based on variable wavefront curvature“, APPLIED OPTICS, Bd. 56, Nr. 13, Art. Nr. 13, Mai 2017, doi: 10.1364/AO.56.00F134.
    9. D. Claus, C. Reichert, und A. Herkommer, „Focus and perspective adaptive digital surgical microscope:optomechanical design and experimental implementation“, JOURNAL OF BIOMEDICAL OPTICS, Bd. 22, Nr. 5, Art. Nr. 5, Mai 2017, doi: 10.1117/1.JBO.22.5.056007.
    10. M. Eckerle u. a., „High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses“, Applied Physics B, Bd. 123, S. 123: 139, Apr. 2017, doi: 10.1007/s00340-017-6720-0.
    11. S. Fischbach u. a., „Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source“, ACS PHOTONICS, Bd. 4, Nr. 6, Art. Nr. 6, Juni 2017, doi: 10.1021/acsphotonics.7b00253.
    12. B. Frank u. a., „Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface“, Science Advances, Bd. 3, Nr. 7, Art. Nr. 7, 2017, doi: 10.1126/sciadv.1700721.
    13. S. Gharbi, H. Pang, C. Lingel, T. Haist, und W. Osten, „Reduction of chromatic dispersion using multiple carrier frequency patterns in SLM-based microscopy“, APPLIED OPTICS, Bd. 56, Nr. 23, Art. Nr. 23, 2017, doi: 10.1364/AO.56.006688.
    14. R. Hahn, J. Krauter, K. Körner, M. Gronle, und Wolfgang. Osten, „Single-shot low coherence pointwise measuring interferometer with    potential for in-line inspection“, MEASUREMENT SCIENCE AND TECHNOLOGY, Bd. 28, Nr. 2, Art. Nr. 2, Feb. 2017, doi: 10.1088/1361-6501/aa52f1.
    15. J. Krauter und W. Osten, „Nondestructive surface profiling of hidden MEMS by an infrared low-coherence interferometric microscope“, Surface Topography: Metrology and Properties, Bd. 6, Dez. 2017, doi: 10.1088/2051-672X/aaa0a8.
    16. J. Liu, D. Claus, T. Xu, T. Kessner, A. Herkommer, und W. Osten, „Light field endoscopy and its parametric description“, OPTICS LETTERS, Bd. 42, Nr. 9, Art. Nr. 9, Mai 2017, doi: 10.1364/OL.42.001804.
    17. C. S. Narayanamurthy, G. Pedrini, und W. Osten, „Digital holographic photoelasticity“, APPLIED OPTICS, Bd. 56, Nr. 13, Art. Nr. 13, Mai 2017, doi: 10.1364/AO.56.00F213.
    18. C. Pruss, G. B. Baer, J. Schindler, und W. Osten, „Measuring aspheres quickly: tilted wave interferometry“, Optical engineering, Bd. 56, Nr. 11, Art. Nr. 11, 2017, doi: 10.1117/1.OE.56.11.111713.
    19. D. Rausch, M. Rommel, A. Herkommer, und T. Talpur, „Illumination design for extended sources based on phase space mapping“, OPTICAL ENGINEERING, Bd. 56, Nr. 6, Art. Nr. 6, Juni 2017, doi: 10.1117/1.OE.56.6.065103.
    20. S. Schmidt, S. Thiele, A. Herkommer, A. Tuennermann, und H. Gross, „Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses“, OPTICS LETTERS, Bd. 42, Nr. 8, Art. Nr. 8, Apr. 2017, doi: 10.1364/OL.42.001612.
    21. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, und W. Osten, „Exploiting scattering media for exploring 3D objects“, LIGHT-SCIENCE & APPLICATIONS, Bd. 6, Feb. 2017, doi: 10.1038/lsa.2016.219.
    22. A. K. Singh, G. Pedrini, W. Osten, und M. Takeda, „Diffraction-Limited Microscopy with a Simple Scatter Plate“, Optics & Photonics News, Nr. 46, Art. Nr. 46, Dez. 2017, [Online]. Verfügbar unter: https://www.osa-opn.org/home/articles/volume_28/december_2017/extras/diffraction-limited_microscopy_with_a_simple_scatt/
    23. A. K. Singh, G. Pedrini, M. Takeda, und W. Osten, „Scatter-plate microscope for lensless microscopy with diffraction limited resolution“, Scientific Reports, Bd. 7, Nr. 1, Art. Nr. 1, Sep. 2017, doi: 10.1038/s41598-017-10767-3.
    24. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, und A. Herkommer, „3D-printed eagle eye: Compound microlens system for foveated imaging“, Science Advances, Bd. 3, S. e1602655, Feb. 2017, doi: 10.1126/sciadv.1602655.
    25. K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, und H. Giessen, „Single mode fiber based delivery of OAM light by 3D direct laser writing“, Opt. Express, Bd. 25, Nr. 17, Art. Nr. 17, Aug. 2017, doi: 10.1364/OE.25.019672.
    26. H. Yang, T. Haist, M. Gronle, und W. Osten, „Simulation of microscopic metal surfaces based on measured microgeometry“, TM-TECHNISCHES MESSEN, Bd. 84, Nr. 7–8, Art. Nr. 7–8, Aug. 2017, doi: 10.1515/teme-2017-0019.
    27. M. Zhou, A. K. Singh, G. Pedrini, W. Osten, J. Min, und B. Yao, „Speckle-correlation imaging through scattering media with hybrid bispectrum-iteration algorithm“, OPTICAL ENGINEERING, Bd. 56, Nr. 12, Art. Nr. 12, Dez. 2017, doi: 10.1117/1.OE.56.12.123102.
  7. 2016

    1. J. Albero u. a., „Wafer-level fabrication of multi-element glass lenses: lens doublet with improved optical performances“, OPTICS LETTERS, Bd. 41, Nr. 1, Art. Nr. 1, Jan. 2016, doi: 10.1364/OL.41.000096.
    2. M. Blattmann u. a., „Bimodal endoscopic probe combining white-light microscopy and optical    coherence tomography“, APPLIED OPTICS, Bd. 55, Nr. 15, Art. Nr. 15, Mai 2016, doi: 10.1364/AO.55.004261.
    3. B. Chen und A. Herkommer, „Generalized Aldis theorem for calculating aberration contributions in freeform systems“, OPTICS EXPRESS, Bd. 24, Nr. 23, Art. Nr. 23, Nov. 2016, doi: 10.1364/OE.24.026999.
    4. B. Chen und A. Herkommer, „High order surface aberration contributions from phase space analysis of    differential rays“, OPTICS EXPRESS, Bd. 24, Nr. 6, Art. Nr. 6, März 2016, doi: 10.1364/OE.24.005934.
    5. M. Eckerle u. a., „Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses“, OPTICS LETTERS, Bd. 41, Nr. 7, Art. Nr. 7, Apr. 2016, doi: 10.1364/OL.41.001680.
    6. I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, W. Osten, und C. Elster, „Evaluation of absolute form measurements using a tilted-wave interferometer“, OPTICS EXPRESS, Bd. 24, Nr. 4, Art. Nr. 4, Feb. 2016, doi: 10.1364/OE.24.003393.
    7. L. Fu u. a., „Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry“, Optics Express, Bd. 24, Nr. 24, Art. Nr. 24, 2016, doi: 10.1364/OE.24.028056.
    8. W. Fuhl u. a., „Non-intrusive practitioner pupil detection for unmodified microscope oculars“, COMPUTERS IN BIOLOGY AND MEDICINE, Bd. 79, S. 36–44, Dez. 2016, doi: 10.1016/j.compbiomed.2016.10.005.
    9. H. Gießen, T. Gissibl, S. Thiele, und A. Herkommer, „Das kleinste Endoskop der Welt per 3D-Druck“, Bd. 47, Nr. 5, Art. Nr. 5, 2016, doi: 10.1002/piuz.201690083.
    10. T. Gissibl, S. Thiele, A. Herkommer, und H. Giessen, „Sub-micrometre accurate free-form optics by three-dimensional printing    on single-mode fibres“, NATURE COMMUNICATIONS, Bd. 7, Juni 2016, doi: 10.1038/ncomms11763.
    11. T. Gissibl, S. Thiele, A. Herkommer, und H. Gießen, „Two-photon direct laser writing of ultracompact multi-lens objectives“, NATURE PHOTONICS, Bd. 10, Nr. 8, Art. Nr. 8, Aug. 2016, doi: 10.1038/NPHOTON.2016.121.
    12. M. Gronle und W. Osten, „View and sensor planning for multi-sensor surface inspection“, Surface Topography: Metrology and Properties, Bd. 4, S. 024009, Apr. 2016, doi: 10.1088/2051-672X/4/2/024009.
    13. Y. Huang u. a., „Absolute test for cylindrical surfaces using the conjugate differential    method“, OPTICAL ENGINEERING, Bd. 55, Nr. 11, Art. Nr. 11, Nov. 2016, doi: 10.1117/1.OE.55.11.114104.
    14. D. Khodadad, A. K. Singh, G. Pedrini, und M. Sjodahl, „Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation“, APPLIED OPTICS, Bd. 55, Nr. 27, Art. Nr. 27, Sep. 2016, doi: 10.1364/AO.55.007735.
    15. C. Lingel, T. Haist, und W. Osten, „Spatial-light-modulator-based adaptive optical system for the use of    multiple phase retrieval methods“, APPLIED OPTICS, Bd. 55, Nr. 36, Art. Nr. 36, Dez. 2016, doi: 10.1364/AO.55.010329.
    16. S. Mahajan u. a., „Wide-Field Lensless 3D Imaging and Visualization of Micro-objects“, JOURNAL OF DISPLAY TECHNOLOGY, Bd. 12, Nr. 11, Art. Nr. 11, Nov. 2016, doi: 10.1109/JDT.2016.2595758.
    17. G. Marc und O. Wolfgang, „Multi-scale referencing and coordinate unification of optical sensors in multi-axis machines“, Advanced Optical Technologies, Bd. 5. in Advanced Optical Technologies, vol. 5. S. 389--, 2016. doi: 10.1515/aot-2016-0053.
    18. F. Mendoza Santoyo, M. Georges, P. Lehmann, W. Osten, und A. G. Armando, Jr., „Speckle Metrology“, OPTICAL ENGINEERING, Bd. 55, Nr. 12, Art. Nr. 12, Dez. 2016, doi: 10.1117/1.OE.55.12.121702.
    19. G. Pedrini u. a., „Residual stress analysis of ceramic coating by laser ablation and digital holography“, Experimental mechanics, Bd. 56, Nr. 5, Art. Nr. 5, 2016, doi: 10.1007/s11340-015-0120-3.
    20. S. Peterhänsel, M. L. Gödecke, K. Frenner, und W. Osten, „Phase-structured illumination as a tool to detect nanometer asymmetries“, JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, Bd. 15, Nr. 4, Art. Nr. 4, Okt. 2016, doi: 10.1117/1.JMM.15.4.044005.
    21. F. Schaal, M. Rutloh, S. Weidenfeld, und W. Osten, „Spatially Tunable Polarization Devices“, 2016, S. 197–216.
    22. A. K. Singh, G. Pedrini, X. Peng, und W. Osten, „Nanoscale measurement of in-plane and out-of-plane displacements of microscopic object by sensor fusion“, OPTICAL ENGINEERING, Bd. 55, Nr. 12, Art. Nr. 12, Dez. 2016, doi: 10.1117/1.OE.55.12.121722.
    23. M. Takeda, A. K. Singh, D. N. Naik, G. Pedrini, und W. Osten, „Holographic Correloscopy-Unconventional Holographic Techniques For Imaging a Three-Dimensional Object Through an Opaque Diffuser or Via a Scattering Wall: A Review“, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Bd. 12, Nr. 4, Art. Nr. 4, Aug. 2016, doi: 10.1109/TII.2015.2503641.
    24. T. Talpur und A. Herkommer, „Review of freeform TIR collimator design methods“, Advanced Optical Technologies, Bd. 5, Jan. 2016, doi: 10.1515/aot-2016-0003.
    25. S. Thiele u. a., „Design, simulation and 3D printing of complex micro-optics for imaging“, 2016 International Conference on Optical MEMS and Nanophotonics (OMN), S. 1–2, Juli 2016, doi: 10.1109/OMN.2016.7565887.
    26. S. Thiele, T. Gissibl, H. Gießen, und A. M. Herkommer, „Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing“, OPTICS LETTERS, Bd. 41, Nr. 13, Art. Nr. 13, Juli 2016, doi: 10.1364/OL.41.003029.
    27. P. W. M. Tsang und W. Osten, „Digital Holography for Industrial Applications“, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Bd. 12, Nr. 4, Art. Nr. 4, Aug. 2016, doi: 10.1109/TII.2016.2586306.
    28. P. Weidmann, U. Weber, S. Schmauder, G. Pedrini, und W. Osten, „Numerical calculation of temperature and surface topology during a laser ablation process for ceramic coatings“, MECCANICA, Bd. 51, Nr. 2, SI, Art. Nr. 2, SI, Feb. 2016, doi: 10.1007/s11012-015-0220-2.
  8. 2015

    1. J. Albero u. a., „Dense arrays of millimeter-sized glass lenses fabricated at wafer-level“, OPTICS EXPRESS, Bd. 23, Nr. 9, Art. Nr. 9, Mai 2015, doi: 10.1364/OE.23.011702.
    2. S. M. Azzem, L. Bouamama, S. Simoens, und W. Osten, „Two beams two orthogonal views particle detection“, JOURNAL OF OPTICS, Bd. 17, Nr. 4, Art. Nr. 4, Apr. 2015, doi: 10.1088/2040-8978/17/4/045301.
    3. D. Buchta, N. Hein, G. Pedrini, C. Krekel, und W. Osten, „Artwork Inspection by Shearography with Adapted Loading“, EXPERIMENTAL MECHANICS, Bd. 55, Nr. 9, Art. Nr. 9, Nov. 2015, doi: 10.1007/s11340-015-0070-9.
    4. A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. Den Boef, und W. Osten, „Phase-sensitive structured illumination to detect nanosized asymmetries    in silicon trenches“, JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, Bd. 14, Nr. 2, Art. Nr. 2, Apr. 2015, doi: 10.1117/1.JMM.14.2.021104.
    5. H. Gilbergs, H. Fang, K. Frenner, und W. Osten, „Adaptive state observer and PD control for dynamic perturbations in    optical systems“, OPTICS EXPRESS, Bd. 23, Nr. 4, Art. Nr. 4, Feb. 2015, doi: 10.1364/OE.23.004002.
    6. T. Haist, M. Gronle, D. A. Bui, und W. Osten, „Holographic multipoint generation for sensing positions“, TM-TECHNISCHES MESSEN, Bd. 82, Nr. 5, SI, Art. Nr. 5, SI, Mai 2015, doi: 10.1515/teme-2014-0039.
    7. T. Haist und W. Osten, „Holography using pixelated spatial light modulators-part 1: theory and    basic considerations“, JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, Bd. 14, Nr. 4, Art. Nr. 4, Okt. 2015, doi: 10.1117/1.JMM.14.4.041310.
    8. T. Haist und W. Osten, „Holography using pixelated spatial light modulators-Part 2: applications“, JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, Bd. 14, Nr. 4, Art. Nr. 4, Okt. 2015, doi: 10.1117/1.JMM.14.4.041311.
    9. T. Haist, A. Peter, und W. Osten, „Holographic projection with field-dependent aberration correction“, OPTICS EXPRESS, Bd. 23, Nr. 5, Art. Nr. 5, März 2015, doi: 10.1364/OE.23.005590.
    10. M. Hasler, J. Stahl, T. Haist, und W. Osten, „Object field expansion in spatial light modulator-based phase contrast    microscopy“, OPTICAL ENGINEERING, Bd. 54, Nr. 4, Art. Nr. 4, Apr. 2015, doi: 10.1117/1.OE.54.4.043107.
    11. O. Kranz, R. D. Geckeler, A. Just, M. Krause, und W. Osten, „From plane to spatial angles: PTB’s spatial angle autocollimator calibrator“, Advanced Optical Technologies, Bd. 0, Jan. 2015, doi: 10.1515/aot-2015-0017.
    12. S. Peterhaensel, H. Laamanen, J. Lehtolahti, M. Kuittinen, W. Osten, und J. Tervo, „Human color vision provides nanoscale accuracy in thin-film thickness characterization“, OPTICA, Bd. 2, Nr. 7, Art. Nr. 7, Juli 2015, doi: 10.1364/OPTICA.2.000627.
    13. S. Peterhänsel, M. L. Gödecke, V. F. Paz, K. Frenner, und W. Osten, „Detection of overlay error in double patterning gratings using phase-structured illumination“, Optics Express, Bd. 23, Nr. 19, Art. Nr. 19, 2015, doi: 10.1364/OE.23.024246.
    14. C. Reinhardt u. a., „Design and fabrication of near- to far-field transformers by sub-100 nm two-photon polymerization“, 2015, S. 73–92. [Online]. Verfügbar unter: https://www.degruyter.com/downloadpdf/books/9783110354324/9783110354324-008/9783110354324-008.pdf
    15. H. Suhr und A. M. Herkommer, „In situ microscopy using adjustment-free optics“, JOURNAL OF BIOMEDICAL OPTICS, Bd. 20, Nr. 11, Art. Nr. 11, Nov. 2015, doi: 10.1117/1.JBO.20.11.116007.
    16. J. Zheng, G. Pedrini, P. Gao, B. Yao, und W. Osten, „Autofocusing and resolution enhancement in digital holographic    microscopy by using speckle-illumination“, JOURNAL OF OPTICS, Bd. 17, Nr. 8, Art. Nr. 8, Aug. 2015, doi: 10.1088/2040-8978/17/8/085301.
  9. 2014

    1. A. Anand u. a., „Single beam Fourier transform digital holographic quantitative phase microscopy“, Appl. Phys. Lett., Bd. 104, Nr. 10, Art. Nr. 10, März 2014, doi: 10.1063/1.4868533.
    2. G. Baer, J. Schindler, C. Pruss, J. Siepmann, und W. Osten, „Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces“, Opt. Express, Bd. 22, Nr. 25, Art. Nr. 25, Dez. 2014, doi: 10.1364/OE.22.031200.
    3. G. Baer, J. Schindler, C. Pruss, J. Siepmann, und W. Osten, „Fast and Flexible Non-Null Testing of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer“, International Journal of Optomechatronics, Bd. 8, Nr. 4, Art. Nr. 4, 2014, doi: 10.1080/15599612.2014.942925.
    4. A. Faridian, G. Pedrini, und W. Osten, „Opposed-view dark-field digital holographic microscopy“, Biomed. Opt. Express, Bd. 5, Nr. 3, Art. Nr. 3, März 2014, doi: 10.1364/BOE.5.000728.
    5. I. Fortmeier, M. Stavridis, A. Wiegmann, M. Schulz, W. Osten, und C. Elster, „Analytical Jacobian and its application to tilted-wave interferometry“, Opt. Express, Bd. 22, Nr. 18, Art. Nr. 18, Sep. 2014, doi: 10.1364/OE.22.021313.
    6. L. Fu, K. Frenner, und W. Osten, „Rigorous speckle simulation using surface integral equations and higher order boundary element method“, Opt. Lett., Bd. 39, Nr. 14, Art. Nr. 14, Juli 2014, doi: 10.1364/OL.39.004104.
    7. Y. Fu, G. Pedrini, und X. Li, „Interferometric Dynamic Measurement: Techniques Based on High-Speed Imaging or a Single Photodetector“, The Scientific World Journal, Bd. 2014, S. 14, 2014, [Online]. Verfügbar unter: http://dx.doi.org/10.1155/2014/232906
    8. P. Gao, G. Pedrini, C. Zuo, und W. Osten, „Phase retrieval using spatially modulated illumination“, Opt. Lett., Bd. 39, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/OL.39.003615.
    9. M. P. Georges u. a., „Combined holography and thermography in a single sensor through image-plane holography at thermal infrared wavelengths“, Opt. Express, Bd. 22, Nr. 21, Art. Nr. 21, Okt. 2014, doi: 10.1364/OE.22.025517.
    10. M. Gronle, W. Lyda, M. Wilke, C. Kohler, und W. Osten, „itom: an open source metrology, automation, and data evaluation software“, Appl. Opt., Bd. 53, Nr. 14, Art. Nr. 14, Mai 2014, doi: 10.1364/AO.53.002974.
    11. T. Haist, M. Gronle, T. Arnold, und D. A. Bui, „Verbesserung von Positionsbestimmungen mittels holografischer Mehrpunktgenerierung“, 2014.
    12. T. Haist, M. Gronle, D. A. Bui, und O. W., „Holografische Mehrpunktgenerierung zur Positionsanalyse“, 2014.
    13. T. Haist, M. Hasler, W. Osten, und M. Baranek, „Programmable Microscopy“, 2014.
    14. T. Haist, S. Dong, T. Arnold, M. Gronle, und W. Osten, „Multi-image position detection“, Opt. Express, Bd. 22, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/OE.22.014450.
    15. T. Haist, C. Lingel, R. Adler, und W. Osten, „Parallelized genetic optimization of spatial light modulator addressing for diffractive applications“, Appl. Opt., Bd. 53, Nr. 7, Art. Nr. 7, März 2014, doi: 10.1364/AO.53.001413.
    16. A. M. Herkommer, „Phase space optics: an alternate approach to freeform optical systems“, 2014.
    17. A. M. Herkommer, „Advances in the design of freeform systems for imaging and illumination applications“, Journal of Optics, Bd. 43, Nr. 4, Art. Nr. 4, Dez. 2014, doi: 10.1007/s12596-014-0224-7.
    18. A. Keck u. a., „Multisensorisches Messsystem zur dreidimensionalen Inspektion technischer Oberflächen“, tm - Technisches Messen, Bd. 81, Nr. 6, Art. Nr. 6, 2014, doi: 10.1515/teme-2014-0402.
    19. X. Li, G. Pedrini, und Y. Fu, „Optical Metrology under Extreme Conditions“, The Scientific World Journal, Bd. 2014, S. 1, 2014, [Online]. Verfügbar unter: http://dx.doi.org/10.1155/2014/263603
    20. F. Mauch und W. Osten, „Model-based approach for planning and evaluation of confocal measurements of rough surfaces“, Measurement Science and Technology, Bd. 25, Nr. 10, Art. Nr. 10, Aug. 2014, doi: 10.1088/0957-0233/25/10/105002.
    21. D. N. Naik, G. Pedrini, M. Takeda, und W. Osten, „Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach&\#x2013;Zehnder radial-shearing interferometer“, Opt. Lett., Bd. 39, Nr. 7, Art. Nr. 7, Apr. 2014, doi: 10.1364/OL.39.001857.
    22. W. Osten, „Remote Laboratories for Optical Metrology- from the Lab to the Cloud“, in Latin America Optics and Photonics Conference, in Latin America Optics and Photonics Conference. Optical Society of America, 2014, S. LTh2D.1. doi: 10.1364/LAOP.2014.LTh2D.1.
    23. W. Osten u. a., „Recent advances in digital holography \Invited\“, Appl. Opt., Bd. 53, Nr. 27, Art. Nr. 27, Sep. 2014, doi: 10.1364/AO.53.000G44.
    24. S. Peterhaensel u. a., „Solving the inverse grating problem with the naked eye“, Opt. Lett., Bd. 39, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/OL.39.003547.
    25. S. Peterhaensel, C. Pruss, und W. Osten, „Limits of diffractometric reconstruction of line gratings when using scalar diffraction theory“, Opt. Lett., Bd. 39, Nr. 13, Art. Nr. 13, Juli 2014, doi: 10.1364/OL.39.003764.
    26. A. K. Singh, A. Faridian, P. Gao, G. Pedrini, und W. Osten, „Quantitative phase imaging using a deep UV LED source“, Opt. Lett., Bd. 39, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/OL.39.003468.
    27. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, und W. Osten, „Looking through a diffuser and around an opaque surface: A holographic approach“, Opt. Express, Bd. 22, Nr. 7, Art. Nr. 7, Apr. 2014, doi: 10.1364/OE.22.007694.
    28. J. Stumpe u. a., „Active and Passive LC Based Polarization Elements“, Molecular Crystals and Liquid Crystals, Bd. 594, Nr. 1, Art. Nr. 1, 2014, doi: 10.1080/15421406.2014.917503.
    29. S. Thiele, A. Seifert, und A. Herkommer, „Wave-optical design of a combined refractive-diffractive varifocal lens“, Optics Express, Bd. 22, Nr. 11, Art. Nr. 11, 2014.
  10. 2013

    1. I. Alexeenko u. a., „Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays“, Appl. Opt., Bd. 52, Nr. 1, Art. Nr. 1, Jan. 2013, doi: 10.1364/AO.52.000A56.
    2. P. Almoro, G. Pedrini, W. Osten, und C. S. Narayanamurthy, „Analysis of Bessel beam propagation in free space using digital holographic microscopy“, Optik, Bd. 124, Nr. 14, Art. Nr. 14, Juli 2013, doi: 10.1016/j.ijleo.2012.06.012.
    3. G. Baer, J. Schindler, C. Pruss, und W. Osten, „Correction of misalignment introduced aberration in non-null test measurements of free-form surfaces“, Journal of the European Optical Society: Rapid Publications, Bd. 8, Nov. 2013, doi: 10.2971/jeos.2013.13074.
    4. A. Faridian, G. Pedrini, und W. Osten, „High-contrast multilayer imaging of biological organisms through dark-field digital refocusing“, 2013, doi: 10.1117/1.JBO.18.8.086009.
    5. D. Fleische, K. Körner, W. Lyda, M. Gronle, F. Mauch, und W. Osten, „4.3.1 Herausforderungen und Lösungsansätze für die fertigungsnahe Qualitätskontrolle mittels optischer 3D-Messtechnik“, Tagungsband. in Tagungsband. S. 469–473, 2013. [Online]. Verfügbar unter: https://www.ama-science.org/proceedings/details/757
    6. P. Gao, G. Pedrini, und W. Osten, „Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy“, Opt. Lett., Bd. 38, Nr. 8, Art. Nr. 8, Apr. 2013, doi: 10.1364/OL.38.001328.
    7. P. Gao, G. Pedrini, und W. Osten, „Phase retrieval with resolution enhancement by using structured illumination“, Opt. Lett., Bd. 38, Nr. 24, Art. Nr. 24, Dez. 2013, doi: 10.1364/OL.38.005204.
    8. T. Haist u. a., „Multipoint vibrometry with dynamic and static holograms“, Review of Scientific Instruments, Bd. 84, Nr. 12, Art. Nr. 12, Dez. 2013, doi: 10.1063/1.4845596.
    9. C. Joenathan, A. Bernal, G. Pedrini, und W. Osten, „Radial shear interferometer with holographic lenses coupled with a spatial Fourier transform method suitable for static and dynamic measurements“, Optical Engineering, Bd. 52, S. 5603-, März 2013, doi: 10.1117/1.OE.52.3.035603.
    10. A. Li u. a., „Fringe projection based quantitative 3D microscopy“, Optik, Bd. 124, Nr. 21, Art. Nr. 21, Nov. 2013, doi: 10.1016/j.ijleo.2013.03.070.
    11. C. Lingel, T. Haist, und W. Osten, „Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect“, Appl. Opt., Bd. 52, Nr. 28, Art. Nr. 28, Okt. 2013, doi: 10.1364/AO.52.006877.
    12. J. Ma, C. Yuan, G. Situ, G. Pedrini, und W. Osten, „Resolution enhancement in digital holographic microscopy with structured illumination“, Chin. Opt. Lett., Bd. 11, Nr. 9, Art. Nr. 9, Sep. 2013, [Online]. Verfügbar unter: http://col.osa.org/abstract.cfm?URI=col-11-9-090901
    13. F. Mauch, M. Gronle, W. Lyda, und W. Osten, „Open-source graphics processing unit–accelerated ray tracer for optical simulation“, Optical Engineering, Bd. 52, Nr. 5, Art. Nr. 5, Mai 2013, doi: 10.1117/1.oe.52.5.053004.
    14. D. N. Naik, G. Pedrini, und W. Osten, „Recording of incoherent-object hologram as complex spatial coherence function using Sagnac radial shearing interferometer and a Pockels cell“, Opt. Express, Bd. 21, Nr. 4, Art. Nr. 4, Feb. 2013, doi: 10.1364/OE.21.003990.
    15. S. Pehnelt, P. Dollinger, W. Osten, und J. Seewig, „Topografiebeurteilung von Zylinderlaufbahnen“, MTZ - Motortechnische Zeitschrift, Bd. 74, Nr. 4, Art. Nr. 4, Apr. 2013, doi: 10.1007/s35146-013-0077-7.
    16. S. Peterhaensel, C. Pruss, und W. Osten, „Phase errors in high line density CGH used for aspheric testing: beyond scalar approximation“, Opt. Express, Bd. 21, Nr. 10, Art. Nr. 10, Mai 2013, doi: 10.1364/OE.21.011638.
    17. S. Peterhänsel, C. Pruss, und W. Osten, „Phase Errors in High Line Density CGH Used for Aspheric Testing : Beyond Scalar Approximation“, Optics Express, Bd. 21, Nr. 10, Art. Nr. 10, 2013, doi: 10.1364/OE.21.011638.
    18. T. Ruppel, S. Dong, F. Rooms, W. Osten, und O. Sawodny, „Feedforward Control of Deformable Membrane Mirrors for Adaptive Optics“, IEEE Transactions on Control Systems Technology, Bd. 21, Nr. 3, Art. Nr. 3, 2013, doi: 10.1109/TCST.2012.2186813.
    19. R. K. Singh, D. N. Naik, H. Itou, M. M. Brundabanam, Y. Miyamoto, und M. Takeda, „Vectorial van Cittert&\#x2013;Zernike theorem based on spatial averaging: experimental demonstrations“, Opt. Lett., Bd. 38, Nr. 22, Art. Nr. 22, Nov. 2013, doi: 10.1364/OL.38.004809.
    20. M. Takeda, „Spatial stationarity of statistical optical fields for coherence holography and photon correlation holography“, Opt. Lett., Bd. 38, Nr. 17, Art. Nr. 17, Sep. 2013, doi: 10.1364/OL.38.003452.
    21. H. J. Tiziani und G. Pedrini, „From speckle pattern photography to digital holographic interferometry \Invited\“, Appl. Opt., Bd. 52, Nr. 1, Art. Nr. 1, Jan. 2013, doi: 10.1364/AO.52.000030.
    22. J.-F. Vandenrijt u. a., „Mobile speckle interferometer in the long-wave infrared for aeronautical nondestructive testing in field conditions“, Optical Engineering, Bd. 52, Nr. 10, Art. Nr. 10, Apr. 2013, doi: 10.1117/1.oe.52.10.101903.
    23. Y. Zhang, G. Situ, G. Pedrini, D. Wang, B. Javidi, und W. Osten, „Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium“, Optics Communications, Bd. 286, S. 56–59, Jan. 2013, doi: 10.1016/j.optcom.2012.07.057.
  11. 2012

    1. P. F. Almoro u. a., „Enhanced deterministic phase retrieval using a partially developed speckle field“, Opt. Lett., Bd. 37, Nr. 11, Art. Nr. 11, Juni 2012, doi: 10.1364/OL.37.002088.
    2. P. Bao, G. Pedrini, und W. Osten, „Optical surface profile measurement using phase retrieval by tuning the illumination wavelength“, Optics Communications, Bd. 285, S. 5029–5036, Nov. 2012, doi: 10.1016/j.optcom.2012.08.018.
    3. P. Bao, G. Situ, G. Pedrini, und W. Osten, „Lensless phase microscopy using phase retrieval with multiple illumination wavelengths“, Appl. Opt., Bd. 51, Nr. 22, Art. Nr. 22, Aug. 2012, doi: 10.1364/AO.51.005486.
    4. A. Burla, T. Haist, W. Lyda, und W. Osten, „Genetic Programming Applied to Automatic Algorithm Design in Multi-scale Inspection Systems“, Optical Engineering, Bd. 51, S. 7001-, Juni 2012, doi: 10.1117/1.OE.51.6.067001.
    5. S. Dolev, T. Haist, und M. Oltean, „Optical supercomputing: introduction to special issue.“, The Journal of Supercomputing, Bd. 62, S. 617–619, Nov. 2012, doi: 10.1007/s11227-012-0777-7.
    6. S. Dong, T. Haist, und W. Osten, „Hybrid wavefront sensor for the fast detection of wavefront disturbances“, Appl. Opt., Bd. 51, Nr. 25, Art. Nr. 25, Sep. 2012, doi: 10.1364/AO.51.006268.
    7. S. Dong, T. Haist, W. Osten, T. Ruppel, und O. Sawodny, „Response analysis of holography-based modal wavefront sensor“, Applied Optics, Bd. 51, Nr. 9, Art. Nr. 9, 2012.
    8. V. Ferreras Paz u. a., „Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization“, Journal of Laser Applications, Bd. 24, Juli 2012, doi: 10.2351/1.4712151.
    9. V. Ferreras Paz, S. Peterhänsel, K. Frenner, und W. Osten, „Solving the inverse grating problem by white light interference Fourier scatterometry“, Light: Science & Applications, Bd. 1, Nov. 2012, doi: 10.1038/lsa.2012.36.
    10. T. Haist und W. Osten, „White-light interferometric method for secure key distribution.“, The Journal of Supercomputing, Bd. 62, Nr. 2, Art. Nr. 2, 2012, [Online]. Verfügbar unter: http://dblp.uni-trier.de/db/journals/tjs/tjs62.html#HaistO12
    11. M. Hasler, T. Haist, und W. Osten, „Stereo vision in spatial-light-modulator--based microscopy“, Opt. Lett., Bd. 37, Nr. 12, Art. Nr. 12, Juni 2012, doi: 10.1364/OL.37.002238.
    12. C. Joenathan, G. Pedrini, I. Alekseenko, und W. Osten, „Novel and simple lateral shear interferometer with holographic lens and spatial Fourier Transform“, Optical Engineering, Bd. 51, S. 5601-, Juli 2012, doi: 10.1117/1.OE.51.7.075601.
    13. K. Körner, G. Pedrini, I. Alexeenko, T. Steinmetz, R. Holzwarth, und W. Osten, „Short temporal coherence digital holography with a femtosecond frequency comb laser for multi-level optical sectioning“, Opt. Express, Bd. 20, Nr. 7, Art. Nr. 7, März 2012, doi: 10.1364/OE.20.007237.
    14. W. Lyda, A. Burla, T. Haist, M. Gronle, und W. Osten, „Implementation and Analysis of an Automated Multiscale Measurement Strategy for Wafer Scale Inspection of Micro Electromechanical Systems“, International Journal of Precision Engineering and Manufacturing, Bd. 13, Apr. 2012, doi: 10.1007/s12541-012-0063-x.
    15. W. Lyda, M. Gronle, D. Fleischle, F. Mauch, und W. Osten, „Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy“, Measurement Science & Technology - MEAS SCI TECHNOL, Bd. 23, Mai 2012, doi: 10.1088/0957-0233/23/5/054009.
    16. F. Mauch, W. Lyda, M. Gronle, und W. Osten, „Improved signal model for confocal sensors accounting for object depending artifacts“, Opt. Express, Bd. 20, Nr. 18, Art. Nr. 18, Aug. 2012, doi: 10.1364/OE.20.019936.
    17. W. Osten, „Different Ways to Overcome the Resolution Problem in Optical Micro and Nano Metrology“, Optical Imaging and Metrology: Advanced Technologies, S. 327–368, Aug. 2012, doi: 10.1002/9783527648443.ch15.
    18. W. Osten und N. Reingand, Optical Imaging and Metrology: Advanced Technologies, Bd. Wiley‐VCH Verlag & Co. KGaA. 2012. doi: 10.1002/9783527648443.
    19. G. Pedrini, H. Li, A. Faridian, und W. Osten, „Digital holography of self-luminous objects by using a Mach--Zehnder setup“, Opt. Lett., Bd. 37, Nr. 4, Art. Nr. 4, Feb. 2012, doi: 10.1364/OL.37.000713.
    20. T. Pinto, C. Kohler, und A. Albertazzi, „Regular mesh measurement of large free form surfaces using stereo vision and fringe projection“, Optics and Lasers in Engineering, Bd. 50, S. 910–916, Juli 2012, doi: 10.1016/j.optlaseng.2012.03.003.
    21. D. Rausch und A. M. Herkommer, „Phase space approach to the use of integrator rods and optical arrays in illumination systems“, Advanced Optical Technologies, Bd. 1, S. 69–78, März 2012, doi: 10.1515/aot-2011-0002.
    22. R. Reichle, C. Pruss, C. Gessenhardt, C. Schulz, und W. Osten, „Diffractive/refractive (hybrid) UV-imaging system for minimally invasive metrology: design, performance, and application experiments“, Appl. Opt., Bd. 51, Nr. 12, Art. Nr. 12, Apr. 2012, doi: 10.1364/AO.51.001982.
    23. M. Rumpel u. a., „Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser“, Opt. Lett., Bd. 37, Nr. 10, Art. Nr. 10, Mai 2012, doi: 10.1364/OL.37.001763.
    24. P. Schau u. a., „Polarization scramblers with plasmonic meander-type metamaterials“, Optics Express, Bd. 20, Nr. 20, Art. Nr. 20, 2012, doi: 10.1364/OE.20.022700.
    25. H. Schweizer u. a., „Resonant multimeander-metasurfaces: A model system for superlenses and communication devices“, physica status solidi (b), Bd. 249, Juli 2012, doi: 10.1002/pssb.201084212.
    26. M. M. Vogel u. a., „Single-layer resonant-waveguide grating for polarization and wavelength selection in Yb:YAG thin-disk lasers“, Opt. Express, Bd. 20, Nr. 4, Art. Nr. 4, Feb. 2012, doi: 10.1364/OE.20.004024.
    27. M. Warber, T. Haist, M. Hasler, und W. Osten, „Vertical differential interference contrast“, Optical Engineering, Bd. 51, Nr. 1, Art. Nr. 1, Feb. 2012, doi: 10.1117/1.oe.51.1.013204.
    28. J. Zimmermann, O. Sawodny, W. Lyda, und W. Osten, „A Control System for Automated Multiscale Measuring systems“, Mechatronics, Bd. 22, Nr. 3, Art. Nr. 3, 2012, doi: 10.1016/j.mechatronics.2011.11.003.
  12. 2011

    1. M. A. Ahmed u. a., „High-power radially polarized Yb:YAG thin-disk laser with high efficiency“, Opt. Express, Bd. 19, Nr. 6, Art. Nr. 6, März 2011, doi: 10.1364/OE.19.005093.
    2. P. Almoro, G. Pedrini, P. Gundu, W. Osten, und S. Hanson, „Enhanced wavefront reconstruction by random phase modulation with a phase diffuser“, Optics and Lasers in Engineering, Bd. 49, S. 252–257, Feb. 2011, doi: 10.1016/j.optlaseng.2010.09.012.
    3. A. Anand, A. Faridian, V. Chhaniwal, G. Pedrini, W. Osten, und B. Javidi, „High-resolution quantitative phase microscopic imaging in deep UV with phase retrieval“, Opt. Lett., Bd. 36, Nr. 22, Art. Nr. 22, Nov. 2011, doi: 10.1364/OL.36.004362.
    4. R. Berger u. a., „Interferometrische Messung von Freiform-Schneidkanten auf einer Diamantwerkzeugbearbeitungsmaschine“, tm - Technisches Messen, Bd. 78, S. 439–446, Okt. 2011, doi: 10.1524/teme.2011.0142.
    5. B. Bilski, K. Frenner, und W. Osten, „About the influence of Line Edge Roughness on measured effective--CD“, Opt. Express, Bd. 19, Nr. 21, Art. Nr. 21, Okt. 2011, doi: 10.1364/OE.19.019967.
    6. A. Burla, T. Haist, W. Lyda, und W. Osten, „Fourier descriptors for defect indication in a multiscale and multisensor measurement system“, Optical Engineering - OPT ENG, Bd. 50, Apr. 2011, doi: 10.1117/1.3562319.
    7. L. Fu u. a., „Mode coupling and interaction in a plasmonic microcavity with resonant  mirrors“, Bd. 84, Nr. 23, Art. Nr. 23, 2011, doi: 10.1103/PhysRevB.84.235402.
    8. M. Gronle, W. Lyda, F. Mauch, und W. Osten, „Laterally chromatically dispersed, spectrally encoded interferometer“, Appl. Opt., Bd. 50, Nr. 23, Art. Nr. 23, Aug. 2011, doi: 10.1364/AO.50.004574.
    9. M. Haefner, C. Pruß, und W. Osten, „laser direct writing“, Optik & Photonik, Bd. 6, Nr. 4, Art. Nr. 4, Dez. 2011, doi: 10.1002/opph.201190387.
    10. M. Haefner, C. Pruss, und W. Osten, „Laser direct writing of rotationally symmetric high-resolution structures“, Appl. Opt., Bd. 50, Nr. 31, Art. Nr. 31, Nov. 2011, doi: 10.1364/AO.50.005983.
    11. D. Hopp u. a., „Diffractive incremental and absolute coding principle for optical rotary                sensors“, Appl. Opt., Bd. 50, Nr. 26, Art. Nr. 26, Sep. 2011, doi: 10.1364/AO.50.005169.
    12. J. Ma u. a., „Systematic analysis of the measurement of cone angles using high line density computer-generated holograms“, Optical Engineering - OPT ENG, Bd. 50, Mai 2011, doi: 10.1117/1.3575649.
    13. J. Ma, C. Pruss, R. Zhu, Z. Gao, C. Yuan, und W. Osten, „An absolute test for axicon surfaces“, Opt. Lett., Bd. 36, Nr. 11, Art. Nr. 11, Juni 2011, doi: 10.1364/OL.36.002005.
    14. W. Osten, „What Optical Metrology Can Do for Experimental Mechanics?“, in Advances in Experimental Mechanics VIII, in Advances in Experimental Mechanics VIII, vol. 70. Trans Tech Publications, Sep. 2011, S. 1--20. doi: 10.4028/www.scientific.net/AMM.70.1.
    15. G. Pedrini, M. E. Schmidt, I. Alekseenko, O. Paul, und W. Osten, „Measurement of nano/micro out-of-plane and in-plane displacements of micromechanical components by using digital holography and speckle interferometry“, Optical Engineering - OPT ENG, Bd. 50, Okt. 2011, doi: 10.1117/1.3572186.
    16. G. Pedrini, F. Zhang, und W. Osten, „Phase retrieval by pinhole scanning“, Opt. Lett., Bd. 36, Nr. 7, Art. Nr. 7, Apr. 2011, doi: 10.1364/OL.36.001113.
    17. S. Pehnelt, W. Osten, und J. Seewig, „Vergleichende Untersuchung optischer Oberflächenmessgeräte mit einem Chirp-Kalibriernormal“, tm - Technisches Messen, Bd. 78, S. 457–462, Okt. 2011, doi: 10.1524/teme.2011.0146.
    18. T. Ruppel, W. Osten, und O. Sawodny, „Model-based feedforward control of large deformable mirrors“, Eur. J. Control, Bd. 17, Nr. 3, Art. Nr. 3, 2011, [Online]. Verfügbar unter: http://dblp.uni-trier.de/db/journals/ejcon/ejcon17.html#RuppelOS11
    19. P. Schau, K. Frenner, L. Fu, H. Schweizer, H. Gießen, und W. Osten, „Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications“, Optics Express, Bd. 19, Nr. 4, Art. Nr. 4, 2011, doi: 10.1364/OE.19.003627.
    20. C. Yuan, G. Situ, G. Pedrini, J. Ma, und W. Osten, „Resolution improvement in digital holography by angular and polarization multiplexing“, Appl. Opt., Bd. 50, Nr. 7, Art. Nr. 7, März 2011, doi: 10.1364/AO.50.0000B6.
  13. 2010

    1. P. Almoro u. a., „Fault-Tolerant Characterization of Phase Objects Using a Speckle-Based Phase Retrieval Technique“, International Journal of Optomechatronics, Bd. 4, S. 397–410, Okt. 2010, doi: 10.1080/15599612.2010.522758.
    2. P. F. Almoro, G. Pedrini, P. N. Gundu, W. Osten, und S. G. Hanson, „Phase microscopy of technical and biological samples through random phase modulation with a diffuser“, Opt. Lett., Bd. 35, Nr. 7, Art. Nr. 7, Apr. 2010, doi: 10.1364/OL.35.001028.
    3. G. Baer, E. Garbusi, W. Lyda, und W. Osten, „Automated surface positioning for a non-null test interferometer“, Optical Engineering, Bd. 49, S. 5602-, Sep. 2010, doi: 10.1117/1.3488051.
    4. A. Burla u. a., „Reliability Analysis of Indicator Functions in an Automated Multiscale Measuring System“, 2010.
    5. M. DaneshPanah, S. Zwick, F. Schaal, M. Warber, B. Javidi, und W. Osten, „3D Holographic Imaging and Trapping for Non-Invasive Cell Identification and Tracking“, J. Display Technol., Bd. 6, Nr. 10, Art. Nr. 10, Okt. 2010, [Online]. Verfügbar unter: http://jdt.osa.org/abstract.cfm?URI=jdt-6-10-490
    6. A. Faridian, D. Hopp, G. Pedrini, U. Eigenthaler, M. Hirscher, und W. Osten, „Nanoscale imaging using deep ultraviolet digital holographic microscopy“, Opt. Express, Bd. 18, Nr. 13, Art. Nr. 13, Juni 2010, doi: 10.1364/OE.18.014159.
    7. D. Fleischle, W. Lyda, F. Mauch, und W. Osten, „Optical metrology for process control: modeling and simulation of sensors for a comparison of different measurement principles“, in Optical Micro- and Nanometrology III, C. Gorecki, A. K. Asundi, und W. Osten, Hrsg., in Optical Micro- and Nanometrology III. SPIE, Apr. 2010. doi: 10.1117/12.855053.
    8. U. Gopinathan, G. Pedrini, B. Javidi, und W. Osten, „Lensless 3D Digital Holographic Microscopic Imaging at Vacuum UV Wavelength“, Display Technology, Journal of, Bd. 6, S. 479–483, Nov. 2010, doi: 10.1109/JDT.2010.2048301.
    9. D. Hopp, C. Pruss, W. Osten, J. Seybold, V. Mayer, und H. Kück, „Optischer inkrementaler Drehgeber in Low-Cost-Bauweise“, tm - Technisches Messen, Bd. 77, Juni 2010, doi: 10.1524/teme.2010.0027.
    10. W. Osten, B. Doerband, E. Garbusi, Ch. Pruss, und L. Seifert, „Testing aspheric lenses: New approaches“, Optoelectronics, Instrumentation and Data Processing, Bd. 46, Nr. 4, Art. Nr. 4, Aug. 2010, doi: 10.3103/S8756699010040059.
    11. G. Situ, G. Pedrini, und W. Osten, „Strategy for cryptanalysis of optical encryption in the Fresnel domain“, Appl. Opt., Bd. 49, Nr. 3, Art. Nr. 3, Jan. 2010, doi: 10.1364/AO.49.000457.
    12. G. Situ, M. Warber, G. Pedrini, und W. Osten, „Phase contrast enhancement in microscopy using spiral phase filtering“, Optics Communications, Bd. 287, S. 1273–1277, Apr. 2010, doi: 10.1016/j.optcom.2009.11.084.
    13. M. Warber, S. Maier, T. Haist, und W. Osten, „Combination of scene-based and stochastic measurement for wide-field aberration correction in microscopic imaging“, Appl. Opt., Bd. 49, Nr. 28, Art. Nr. 28, Okt. 2010, doi: 10.1364/AO.49.005474.
    14. S. Zwick, T. Haist, M. Warber, und W. Osten, „Dynamic holography using pixelated light modulators“, Appl. Opt., Bd. 49, Nr. 25, Art. Nr. 25, Sep. 2010, doi: 10.1364/AO.49.000F47.
    15. S. Zwick, C. Schaub, T. Haist, und W. Osten, „Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping“, Opt. Express, Bd. 18, Nr. 19, Art. Nr. 19, Sep. 2010, doi: 10.1364/OE.18.019941.
  14. 2009

    1. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, und S. G. Hanson, „Angular displacement and deformation analyses using a speckle-based wavefront sensor“, Appl. Opt., Bd. 48, Nr. 5, Art. Nr. 5, Feb. 2009, doi: 10.1364/AO.48.000932.
    2. A. Anand, V. K. Chhaniwal, P. Almoro, G. Pedrini, und W. Osten, „Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval“, Opt. Lett., Bd. 34, Nr. 10, Art. Nr. 10, Mai 2009, doi: 10.1364/OL.34.001522.
    3. K. Christian, S. Xavier, O. Wolfgang, und B. Torsten, „Charakterisierung von Flüssigkristalllichtmodulatoren für die Rekonstruktion digitaler Hologramme (Investigation and Qualification of Spatial Light Modulators for the Reconstruction of Digital Holograms)“, tm - Technisches Messen, Bd. 73. in tm - Technisches Messen, vol. 73. S. 157--, 2009. doi: 10.1524/teme.2006.73.3.157.
    4. E. F., O. Wolfgang, und J. Werner, „Detektion und Analyse von Materialfehlern nach dem Prinzip ‚Erkennung durch Synthese” (Detection and Analysis of Material Faults using the Principle ‘Recognition by Synthesis”)“, tm – Technisches Messen Plattform für Methoden, Systeme und Anwendungen der Messtechnik, Bd. 69. in tm – Technisches Messen Plattform für Methoden, Systeme und Anwendungen der Messtechnik, vol. 69. S. 227--, 2009. doi: 10.1524/teme.2002.69.5.227.
    5. Y. Fu, G. Pedrini, B. Hennelly, R. Groves, und W. Osten, „Dual-wavelength image-plane digital holography for dynamic measurement“, Optics and Lasers in Engineering, Bd. 47, S. 552–557, Mai 2009, doi: 10.1016/j.optlaseng.2008.10.002.
    6. E. Garbusi und W. Osten, „Perturbation methods in optics: application to the interferometric measurement of surfaces“, J. Opt. Soc. Am. A, Bd. 26, Nr. 12, Art. Nr. 12, Dez. 2009, doi: 10.1364/JOSAA.26.002538.
    7. E. Garbusi, C. Pruss, und W. Osten, „Process-Integrated Measurement of Aspherical Surfaces Prozessintegrierte Vermessung asphärischer Oberflächen“, Tm-technisches Messen, Bd. 76, S. 354–359, Juli 2009, doi: 10.1524/teme.2009.0971.
    8. R. Groves, B. Pradarutti, E. Kouloumpi, W. Osten, und G. Notni, „2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging“, NDT & E International, Bd. 42, S. 543–549, Sep. 2009, doi: 10.1016/j.ndteint.2009.04.002.
    9. T. Haist und W. Osten, „Proposal for Secure Key Distribution Using Classical Optics.“, in OSC, S. Dolev und M. Oltean, Hrsg., in OSC, vol. 5882. Springer, 2009, S. 99–101. [Online]. Verfügbar unter: http://dblp.uni-trier.de/db/conf/osc/osc2009.html#HaistO09
    10. M. Hering, K. Koerner, und B. Jaehne, „Correlated speckle noise in white-light interferometry: theoretical analysis of measurement uncertainty“, Appl. Opt., Bd. 48, Nr. 3, Art. Nr. 3, Jan. 2009, doi: 10.1364/AO.48.000525.
    11. C. Kohler, T. Haist, und W. Osten, „Model-free method for measuring the full Jones matrix of reflective liquid-crystal displays“, 2009.
    12. C. Kohler, F. Zhang, und W. Osten, „Characterization of a spatial light modulator and its application in phase retrieval“, Appl. Opt., Bd. 48, Nr. 20, Art. Nr. 20, Juli 2009, doi: 10.1364/AO.48.004003.
    13. K. M., O. Wolfgang, und J. Werner, „Scherografie – die Umsetzung des Prinzips in ein mobiles Prüfsystem (Shearography – the Implementation of the Principle into a Mobile Inspection System)“, tm – Technisches Messen Plattform für Methoden, Systeme und Anwendungen der Messtechnik, Bd. 69. in tm – Technisches Messen Plattform für Methoden, Systeme und Anwendungen der Messtechnik, vol. 69. S. 217--, 2009. doi: 10.1524/teme.2002.69.5.217.
    14. G. Pedrini, J. Gaspar, W. Osten, und O. Paul, „Development of Reference Standards for the Calibration of Optical Systems Used in the Measurement of Microcomponents“, Strain, Bd. 46, S. 79–88, Jan. 2009, doi: 10.1111/j.1475-1305.2008.00603.x.
    15. G. Pedrini, J. Gaspar, O. Paul, und W. Osten, „Measurement of in-plane deformations of microsystems by digital holography and speckle interferometry“, Chinese Optics Letters, Bd. 7, S. 1109–1112, Dez. 2009.
    16. G. Pedrini, J. Gaspar, T. Wu, W. Osten, und O. Paul, „Calibration of optical systems for the measurement of microcomponents“, Optics and Lasers in Engineering, Bd. 47, S. 203–210, Feb. 2009, doi: 10.1016/j.optlaseng.2008.05.002.
    17. S. Rafler, M. Petschow, U. Seifert, K. Frenner, J. Gockeritz, und W. Osten, „Effects of pupil discretization and Littrow illumination in the simulation of bright-field defect detection“, Opt. Lett., Bd. 34, Nr. 12, Art. Nr. 12, Juni 2009, doi: 10.1364/OL.34.001840.
    18. F. Schaal, M. Warber, S. Zwick, H. van der Kuip, T. Haist, und W. Osten, „Marker-free cell discrimination by holographic optical tweezers“, Journal of The European Optical Society-rapid Publications - J EUR OPT SOC-RAPID PUBL, Bd. 4, Juni 2009, doi: 10.2971/jeos.2009.09028.
    19. T. Schuster, S. Rafler, V. F. Paz, K. Frenner, und W. Osten, „Fieldstitching with Kirchhoff-boundaries as a model based description for line edge roughness (LER) in scatterometry“, Microelectronic Engineering, Bd. 86, Nr. 4–6, Art. Nr. 4–6, Apr. 2009, doi: 10.1016/j.mee.2008.11.019.
    20. G. Situ, G. Pedrini, und W. Osten, „Spiral phase filtering and orientation-selective edge detection/enhancement“, J. Opt. Soc. Am. A, Bd. 26, Nr. 8, Art. Nr. 8, Aug. 2009, doi: 10.1364/JOSAA.26.001788.
    21. S. Zwick u. a., „Holographic twin traps“, Journal of Optics A: Pure and Applied Optics, Bd. 11, S. 034011, Jan. 2009, doi: 10.1088/1464-4258/11/3/034011.
  15. 2008

    1. P. F. Almoro, G. Pedrini, A. Anand, W. Osten, und S. G. Hanson, „Interferometric evaluation of angular displacements using phase retrieval“, Opt. Lett., Bd. 33, Nr. 18, Art. Nr. 18, Sep. 2008, doi: 10.1364/OL.33.002041.
    2. N. Anscombe und W. Osten, „Measuring up to industry“, Nature Photonics, Bd. 2, S. 672, Nov. 2008, [Online]. Verfügbar unter: https://doi.org/10.1038/nphoton.2008.221
    3. P. Bao, F. Zhang, G. Pedrini, und W. Osten, „Phase retrieval using multiple illumination wavelengths“, Opt. Lett., Bd. 33, Nr. 4, Art. Nr. 4, Feb. 2008, doi: 10.1364/OL.33.000309.
    4. E. Garbusi, C. Pruss, und W. Osten, „Single frame interferogram evaluation“, Appl. Opt., Bd. 47, Nr. 12, Art. Nr. 12, Apr. 2008, doi: 10.1364/AO.47.002046.
    5. P. Goetz, T. Schuster, K. Frenner, S. Rafler, und W. Osten, „Normal vector method for the RCWA with automated vector field generation“, Opt. Express, Bd. 16, Nr. 22, Art. Nr. 22, Okt. 2008, doi: 10.1364/OE.16.017295.
    6. U. Gopinathan, G. Pedrini, und W. Osten, „Coherence effects in digital in-line holographic microscopy“, J. Opt. Soc. Am. A, Bd. 25, Nr. 10, Art. Nr. 10, Okt. 2008, doi: 10.1364/JOSAA.25.002459.
    7. R. M. Groves, G. Pedrini, und W. Osten, „Real-time extended dynamic range imaging in shearography“, Appl. Opt., Bd. 47, Nr. 30, Art. Nr. 30, Okt. 2008, doi: 10.1364/AO.47.005550.
    8. T. Haist und W. Osten, „Ultrafast Digital-Optical Arithmetic Using Wave-Optical Computing“, Sep. 2008, S. 33–45. doi: 10.1007/978-3-540-85673-3_3.
    9. C. Kohler, T. Haist, X. Schwab, und W. Osten, „Hologram optimization for SLM-based reconstruction with regard to polarization effects“, Opt. Express, Bd. 16, Nr. 19, Art. Nr. 19, Sep. 2008, doi: 10.1364/OE.16.014853.
    10. W. Osten, „Digital Image Processing for Optical Metrology“, S. 481–563, 2008.
    11. J. Regin u. a., „Fusion multimodaler Daten am Beispiel eines Mikrolinsen-Arrays“, tm - Technisches Messen, Bd. 75, Nr. 5, Art. Nr. 5, 2008, doi: 10.1524/teme.2008.0877.
    12. G. Situ, D. S. Monaghan, T. J. Naughton, J. T. Sheridan, G. Pedrini, und W. Osten, „Collision in double random phase encoding“, Optics Communications, Bd. 281, Nr. 20, Art. Nr. 20, Okt. 2008, doi: 10.1016/j.optcom.2008.07.011.
    13. Q. Tan, G. Pedrini, und W. Osten, „Phase retrieval of complex optical fields by binary amplitude modulation“, Appl. Opt., Bd. 47, Nr. 22, Art. Nr. 22, Aug. 2008, doi: 10.1364/AO.47.004077.
    14. D. Wang, J. Zhao, F. Zhang, G. Pedrini, und W. Osten, „High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms“, Appl. Opt., Bd. 47, Nr. 19, Art. Nr. 19, Juli 2008, doi: 10.1364/AO.47.000D12.
  16. 2007

    1. P. Almoro, G. Pedrini, und W. Osten, „Aperture synthesis in phase retrieval using a volume-speckle field“, Opt. Lett., Bd. 32, Nr. 7, Art. Nr. 7, Apr. 2007, doi: 10.1364/OL.32.000733.
    2. A. Anand, G. Pedrini, W. Osten, und P. Almoro, „Wavefront sensing with random amplitude mask and phase retrieval“, Opt. Lett., Bd. 32, Nr. 11, Art. Nr. 11, Juni 2007, doi: 10.1364/OL.32.001584.
    3. Y. Fu, R. M. Groves, G. Pedrini, und W. Osten, „Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence“, Appl. Opt., Bd. 46, Nr. 36, Art. Nr. 36, Dez. 2007, doi: 10.1364/AO.46.008645.
    4. Y. Fu, G. Pedrini, und W. Osten, „Vibration measurement by temporal Fourier analyses of a digital hologram sequence“, Appl. Opt., Bd. 46, Nr. 23, Art. Nr. 23, Aug. 2007, doi: 10.1364/AO.46.005719.
    5. W. Gorski und W. Osten, „Tomographic imaging of photonic crystal fibers“, Opt. Lett., Bd. 32, Nr. 14, Art. Nr. 14, Juli 2007, doi: 10.1364/OL.32.001977.
    6. T. Haist und W. Osten, „An Optical Solution For The Traveling Salesman Problem“, Opt. Express, Bd. 15, Nr. 16, Art. Nr. 16, Aug. 2007, doi: 10.1364/OE.15.010473.
    7. N. Kerwien, T. Schuster, S. Rafler, W. Osten, und M. Totzeck, „Vectorial thin-element approximation: a semirigorous determination of Kirchhoff’s boundary conditions“, J. Opt. Soc. Am. A, Bd. 24, Nr. 4, Art. Nr. 4, Apr. 2007, doi: 10.1364/JOSAA.24.001074.
    8. E. Kolenović und W. Osten, „Estimation of the phase error in interferometric measurements by evaluation of the speckle field intensity“, Appl. Opt., Bd. 46, Nr. 24, Art. Nr. 24, Aug. 2007, doi: 10.1364/AO.46.006096.
    9. G. Pedrini und W. Osten, „Time Resolved Digital Holographic Interferometry for Investigations of Dynamical Events in Mechanical Components and Biological Tissues“, Strain, Bd. 43, S. 240–249, Aug. 2007, doi: 10.1111/j.1475-1305.2007.00341.x.
    10. G. Pedrini, F. Zhang, und W. Osten, „Deterministic phase retrieval from diffracted intensities speckle fields“, Optics Communications, Bd. 277, Nr. 1, Art. Nr. 1, Sep. 2007, doi: 10.1016/j.optcom.2007.04.041.
    11. G. Pedrini, F. Zhang, und W. Osten, „Digital holographic microscopy in the deep (193 nm) ultraviolet“, Appl. Opt., Bd. 46, Nr. 32, Art. Nr. 32, Nov. 2007, doi: 10.1364/AO.46.007829.
    12. L. Yu, G. Pedrini, W. Osten, und M. K. Kim, „Three-dimensional angle measurement based on propagation vector analysis of digital holography“, Appl. Opt., Bd. 46, Nr. 17, Art. Nr. 17, Juni 2007, doi: 10.1364/AO.46.003539.
    13. F. Zhang, G. Pedrini, und W. Osten, „Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation“, Phys. Rev. A, Bd. 75, Apr. 2007, doi: 10.1103/PhysRevA.75.043805.
  17. 2006

    1. T. S. A., F. M. Santoyo, M. D. la Torre Ibarra, G. Pedrini, und W. Osten, „Simultaneous two-dimensional endoscopic pulsed digital holography for evaluation of dynamic displacements“, Appl. Opt., Bd. 45, Nr. 19, Art. Nr. 19, Juli 2006, doi: 10.1364/AO.45.004534.
    2. P. Almoro, G. Pedrini, und W. Osten, „Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field“, Appl. Opt., Bd. 45, Nr. 34, Art. Nr. 34, Dez. 2006, doi: 10.1364/AO.45.008596.
    3. T. Baumbach, W. Osten, C. von Kopylow, und W. Jueptner, „Remote metrology by comparative digital holography“, Appl. Opt., Bd. 45, Nr. 5, Art. Nr. 5, Feb. 2006, doi: 10.1364/AO.45.000925.
    4. T. Baumbach, C. von Kopylow, W. Jüptner, und W. Osten, „Formvergleich zweier Objekte an unterschiedlichen Standorten mit digitaler Holografie (Shape Comparison between two Objects at Different Locations with Digital Holography)“, Tm-technisches Messen, Bd. 73, S. 120–131, Jan. 2006, doi: 10.1524/teme.2006.73.3.120.
    5. T. Haist, M. Reicherter, M. Wu, und L. Seifert, „Using Graphics Boards to Compute Holograms.“, Computing in Science and Engineering, Bd. 8, Nr. 1, Art. Nr. 1, 2006, [Online]. Verfügbar unter: http://dblp.uni-trier.de/db/journals/cse/cse8.html#HaistRWS06
    6. T. Haist, S. Zwick, M. Warber, und W. Osten, „Spatial Light Modulators—Versatile Tools for Holography“, Journal of Holography and Speckle, Bd. 3, S. 125–136, Dez. 2006, doi: 10.1166/jhs.2006.019.
    7. J. Kauffmann und H. J. Tiziani, „Time-resolved vibration measurement with temporal speckle pattern interferometry“, Appl. Opt., Bd. 45, Nr. 26, Art. Nr. 26, Sep. 2006, doi: 10.1364/AO.45.006682.
    8. C. Kohler, U. Droste, K. Körner, und W. Osten, „Reduktion von Überschwingern bei der 3D-Streifenprojektion durch ‚Inverse Filterung‘ (Reduction of Overshooting in 3D Fringe Projection Measurements by Inverse Filtering)“, Tm-technisches Messen, Bd. 73, S. 595–602, Nov. 2006, doi: 10.1524/teme.2006.73.11.595.
    9. C. Kohler, X. Schwab, und W. Osten, „Optimally tuned spatial light modulators for digital holography“, Appl. Opt., Bd. 45, Nr. 5, Art. Nr. 5, Feb. 2006, doi: 10.1364/AO.45.000960.
    10. K. Körner, A. K. Ruprecht, T. Wiesendanger, und W. Osten, „Optical profiling techniques for MEMS Measurement“, S. 145–162, 2006.
    11. W. Osten und P. Ferraro, „Digital Holography for the Inspection of Microsystems“, S. 351–426, 2006.
    12. W. Osten und W. Jüptner, „Messtechnik im Zeitalter der Globalisierung: Objektvergleich über große Entfernungen mit interferometrischer Empfindlichkeit“, Tm-technisches Messen, Bd. 73, S. 117–119, Jan. 2006, doi: 10.1524/teme.2006.73.3.117.
    13. E. Papastathopoulos, K. Koerner, und W. Osten, „Chromatic confocal spectral interferometry“, Appl. Opt., Bd. 45, Nr. 32, Art. Nr. 32, Nov. 2006, doi: 10.1364/AO.45.008244.
    14. E. Papastathopoulos, K. Koerner, und W. Osten, „Chromatically dispersed interferometry with wavelet analysis“, Opt. Lett., Bd. 31, Nr. 5, Art. Nr. 5, März 2006, doi: 10.1364/OL.31.000589.
    15. G. Pauliat, G. Roosen, M. Georges, und G. Pedrini, „Passive introduction of carrier fringes in real-time photorefractive interferometers for single interferogram analysis“, Journal of The European Optical Society-rapid Publications - J EUR OPT SOC-RAPID PUBL, Bd. 1, Nov. 2006, doi: 10.2971/jeos.2006.06024.
    16. G. Pedrini, I. Alexeenko, W. Osten, und U. Schnars, „On-line surveillance of a dynamic process by a moving system based on pulsed digital holographic interferometry“, Appl. Opt., Bd. 45, Nr. 5, Art. Nr. 5, Feb. 2006, doi: 10.1364/AO.45.000935.
    17. G. Pedrini, W. Osten, und M. E. Gusev, „High-speed digital holographic interferometry for vibration measurement“, Appl. Opt., Bd. 45, Nr. 15, Art. Nr. 15, Mai 2006, doi: 10.1364/AO.45.003456.
    18. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, und W. Osten, „Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers“, Appl. Opt., Bd. 45, Nr. 5, Art. Nr. 5, Feb. 2006, doi: 10.1364/AO.45.000888.
    19. A. T. Saucedo, F. M. Santoyo, M. D. la Torre-Ibarra, G. Pedrini, und W. Osten, „Endoscopic pulsed digital holography for 3D measurements“, Opt. Express, Bd. 14, Nr. 4, Art. Nr. 4, Feb. 2006, doi: 10.1364/OE.14.001468.
    20. F. Zhang, G. Pedrini, und W. Osten, „Reply to Comment on ‚Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution‘“, Opt. Lett., Bd. 31, Nr. 19, Art. Nr. 19, Okt. 2006, doi: 10.1364/OL.31.002848.
    21. F. Zhang, G. Pedrini, und W. Osten, „Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution“, Opt. Lett., Bd. 31, Nr. 11, Art. Nr. 11, Juni 2006, doi: 10.1364/OL.31.001633.
  18. 2005

    1. R. Berger, N. Kerwien, und W. Osten, „The Chirp-Z-Transform in Digital Holography“, Journal of Holography and Speckle, Bd. 2, Nr. 1, Art. Nr. 1, Apr. 2005, doi: 10.1166/jhs.2005.001.
    2. C. v. Kopylow, T. Baumbach, W. Osten, und W. Jüptner, „Comparative Digital Holography for application in Quality Assurance during Production“, Bd. 12, S. 137–142, 2005.
    3. L. Martinez-Leon, G. Pedrini, und W. Osten, „Applications of short-coherence digital holography in microscopy“, Appl. Opt., Bd. 44, Nr. 19, Art. Nr. 19, Juli 2005, doi: 10.1364/AO.44.003977.
    4. W. Osten, „Digital Holography“, S. 79–88, 2005.
    5. W. Osten, C. S. Kohler, und J. Liesener, „Evaluation and application of spatial light modulators for optical metrology“, 2005.
    6. G. Pedrini, I. Alexeenko, P. Zaslansky, H. J. Tiziani, und W. Osten, „Digital holographic interferometry for investigations in biomechanics“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 5776, Feb. 2005, doi: 10.1117/12.611633.
    7. G. Pedrini, W. Osten, und Y. Zhang, „Wave-front reconstruction from a sequence of interferograms recorded at different planes“, Opt. Lett., Bd. 30, Nr. 8, Art. Nr. 8, Apr. 2005, doi: 10.1364/OL.30.000833.
    8. L. Seifert, H. J. Tiziani, und W. Osten, „Wavefront reconstruction with the adaptive Shack–Hartmann sensor“, Optics Communications, Bd. 245, S. 255–269, Jan. 2005, doi: 10.1016/j.optcom.2004.09.074.
    9. A. Tavrov, J. Schmit, N. Kerwien, W. Osten, und H. Tiziani, „Diffraction-induced coherence levels“, Appl. Opt., Bd. 44, Nr. 11, Art. Nr. 11, Apr. 2005, doi: 10.1364/AO.44.002202.
    10. Y. Zhang, G. Pedrini, W. Osten, und H. J. Tiziani, „Reconstruction of In-Line Holograms Using Phase Retrieval Algorithms“, Physica Scripta, S. 102, 2005, doi: 10.1238/physica.topical.118a00102.
    11. D.-X. Zheng, Y. Zhang, J.-L. Shen, C.-L. Zhang, und G. Pedrini, „Wave field reconstruction from a hologram sequence“, Optics Communications, Bd. 249, Nr. 1–3, Art. Nr. 1–3, Mai 2005, doi: 10.1016/j.optcom.2005.01.011.
  19. 2004

    1. D. Kayser, T. Bothe, und W. Osten, „Scaled topometry in a multisensor approach“, Optical Engineering - OPT ENG, Bd. 43, S. 2469–2477, Okt. 2004, doi: 10.1117/1.1788690.
    2. K. Körner, A. Ruprecht, und T. Wiesendanger, „New approaches in depth-scanning optical metrology“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 5457, Sep. 2004, doi: 10.1117/12.554754.
    3. W. Li, T. Bothe, W. Osten, und M. Kalms, „Object adapted pattern projection—Part I: generation of inverse patterns“, Optics and Lasers in Engineering, Bd. 41, Nr. 1, Art. Nr. 1, 2004, doi: https://doi.org/10.1016/S0143-8166(02)00116-1.
    4. C. Pruss, S. Reichelt, H. Tiziani, und W. Osten, „Computer-generated holograms in interferometric testing“, Optical Engineering - OPT ENG, Bd. 43, S. 2534–2540, Nov. 2004, doi: 10.1117/1.1804544.
    5. C. Pruss und H. J. Tiziani, „Dynamic null lens for aspheric testing using a membrane mirror“, Optics Communications - OPT COMMUN, Bd. 233, S. 15–19, März 2004, doi: 10.1016/j.optcom.2004.01.030.
    6. A. K. Ruprecht, T. F. Wiesendanger, und H. J. Tiziani, „Chromatic confocal microscopy with a finite pinhole size“, Opt. Lett., Bd. 29, Nr. 18, Art. Nr. 18, Sep. 2004, doi: 10.1364/OL.29.002130.
    7. Y. Yasuno, T. F Wiesendanger, A. K Ruprecht, S. Makita, T. Yatagai, und H. J Tiziani, „Wavefront-flatness evaluation by wavefront-correlation-information-entropy method and its application for adaptive confocal microscope“, Optics Communications, Bd. 232, S. 91–97, März 2004, doi: 10.1016/j.optcom.2003.12.057.
    8. Y. a. n. Zhang, G. Pedrini, W. Osten, und H. J. Tiziani, „Phase retrieval microscopy for quantitative phase-contrast imaging“, Optik, Bd. 115, Nr. 2, Art. Nr. 2, 2004, doi: https://doi.org/10.1078/0030-4026-00336.
    9. Y. Zhang, G. Pedrini, W. Osten, und H. J. Tiziani, „Reconstruction of in-line digital holograms from two intensity measurements“, Opt. Lett., Bd. 29, Nr. 15, Art. Nr. 15, Aug. 2004, doi: 10.1364/OL.29.001787.
    10. Y. Zhang, G. Pedrini, W. Osten, und H. J. Tiziani, „Applications of fractional transforms to object reconstruction from in-line holograms“, Opt. Lett., Bd. 29, Nr. 15, Art. Nr. 15, 2004, doi: 10.1364/OL.29.001793.
  20. 2003

    1. C. Falldorf, W. Osten, und E. Kolenovic, „Speckle shearography using a multiband light source“, Optics and Lasers in Engineering, Bd. 40, S. 543–552, Nov. 2003, doi: 10.1016/S0143-8166(02)00080-5.
    2. T. Haist, W. Osten, M. Reicherter, J. Liesener, und L. Seifert, „Dynamic holography and its application in measurement systems“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 5202, Nov. 2003, doi: 10.1117/12.501511.
    3. M. Kalms und W. Osten, „Mobile shearography system for the inspection of aircraft and automotive components“, Optical Engineering - OPT ENG, Bd. 42, S. 1188–1196, Mai 2003, doi: 10.1117/1.1566968.
    4. E. Kolenovic, W. Osten, R. Klattenhoff, S. Lai, C. von Kopylow, und W. Jüptner, „Miniaturized digital holography sensor for distal three-dimensional endoscopy“, Appl. Opt., Bd. 42, Nr. 25, Art. Nr. 25, Sep. 2003, doi: 10.1364/AO.42.005167.
    5. K. Leonhardt, U. Droste, und H. J. Tiziani, „Interferometry for Ellipso-Height-Topometry – Part 1: Coherence scanning on the base of spacial coherence“, Optik - International Journal for Light and Electron Optics, Bd. 113, S. 513–519, Dez. 2003, doi: 10.1078/0030-4026-00200.
    6. G. Pedrini, I. Alexeenko, W. Osten, und H. J. Tiziani, „Temporal phase unwrapping of digital hologram sequences“, Appl. Opt., Bd. 42, Nr. 29, Art. Nr. 29, Okt. 2003, doi: 10.1364/AO.42.005846.
    7. G. Pedrini, M. Gusev, S. Schedin, und H. J. Tiziani, „Pulsed digital holographic interferometry by using a flexible fiber endoscope“, Optics and Lasers in Engineering - OPT LASER ENG, Bd. 40, S. 487–499, Nov. 2003, doi: 10.1016/S0143-8166(02)00077-5.
    8. K.-P. Proll, J.-M. Nivet, K. Körner, und H. J. Tiziani, „Microscopic three-dimensional topometry with ferroelectric liquid-crystal-on-silicon displays“, Appl. Opt., Bd. 42, Nr. 10, Art. Nr. 10, Apr. 2003, doi: 10.1364/AO.42.001773.
    9. S. Reichelt, C. Pruss, und H. J. Tiziani, „Absolute interferometric test of aspheres by use of twin computer-generated holograms“, Appl. Opt., Bd. 42, Nr. 22, Art. Nr. 22, Aug. 2003, doi: 10.1364/AO.42.004468.
    10. S. Reichelt und H. J. Tiziani, „Twin-CGHs for absolute calibration in wavefront testing interferometry“, Bg, Bd. 878740, Mai 2003, doi: 10.1016/S0030-4018(03)01363-4.
    11. L. Seifert, J. Liesener, und H. J. Tiziani, „The adaptive Shack–Hartmann sensor“, Optics Communications, Bd. 216, Nr. 4, Art. Nr. 4, 2003, doi: https://doi.org/10.1016/S0030-4018(02)02351-9.
    12. T. Wiesendanger, Y. Yasuno, A. Ruprecht, T. Yatagai, und H. Tiziani, „Characterization of Microoptic Arrays by Evaluation of the Axial Confocal Response“, Optical Review, Bd. 10, S. 301–302, Juli 2003, doi: 10.1007/s10043-003-0301-7.
    13. Y. Yasuno, S. Makita, T. Yatagai, T. F. Wiesendanger, A. K. Ruprecht, und H. J. Tiziani, „Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching“, Opt. Express, Bd. 11, Nr. 1, Art. Nr. 1, Jan. 2003, doi: 10.1364/OE.11.000054.
    14. Y. Yasuno, T. Wiesendanger, A. Ruprecht, T. Yatagai, und H. J. Tiziani, „Determination of Aberration Coefficient of Microoptic Arrays from Axial Confocal Response by Neural Method“, Optical Review, Bd. 10, S. 318–320, Juli 2003, doi: 10.1007/s10043-003-0318-y.
    15. Y. Yasuno, T. Yatagai, T. Wiesendanger, A. Ruprecht, und H. Tiziani, „Aberration measurement from confocal axial intensity response using neural network“, Optics express, Bd. 10, S. 1451–7, Jan. 2003, doi: 10.1364/OE.10.001451.
    16. Y. Zhang, G. Pedrini, W. Osten, und H. J. Tiziani, „Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm“, Opt. Express, Bd. 11, Nr. 24, Art. Nr. 24, Dez. 2003, doi: 10.1364/OE.11.003234.
    17. Y. Zhang, G. Pedrini, W. Osten, und H. J. Tiziani, „Image reconstruction for in-line holography with the Yang-Gu algorithm“, Appl. Opt., Bd. 42, Nr. 32, Art. Nr. 32, Nov. 2003, doi: 10.1364/AO.42.006452.
  21. 2002

    1. Th. Bothe, W. Li, W. Osten, und W. Jüptner, „Generation and evaluation of object adapted inverse fringe patterns. Proc. Intern Symposium Photonics in Measurement“, S. 299–304, 2002.
    2. Th. Bothe, W. Osten, A. Gesierich, und W. Jüptner, „Compact 3D-Camera“, Bd. 4778, S. 48–59, 2002, doi: 10.1117/12.473573.
    3. C. Falldorf, W. Osten, E. Kolenovic, und W. P. O. Jueptner, „Features of multiband speckle shearography“, Proceedings of SPIE - The International Society for Optical Engineering, Juli 2002, doi: 10.1117/12.484535.
    4. T. Haist und H. J. Tiziani, „Color-coded Object-adapted Fringe Projection for Two- and Threedimensional Quality Control“, Technisches Messen, Bd. 69, S. 367–373, 2002.
    5. F. Kallmeyer u. a., „Optical processing of interferometric fringes and detection of faults by wavelet filtering“, VDI Berichte, Bd. 1694, S. 35–40, Jan. 2002.
    6. F. Kallmeyer u. a., „Optical processing for the detection of faults in interferometric patterns“, in Interferometry XI: Techniques and Analysis, Proc. SPIE, Hrsg., in Interferometry XI: Techniques and Analysis, vol. 4777. SPIE, Juni 2002. doi: 10.1117/12.472237.
    7. J. Kauffmann und H. Tiziani, „Temporal speckle pattern interferometry for vibration measurement“, Proceedings of SPIE - The International Society for Optical Engineering, S. 133–136, Mai 2002, doi: 10.1117/12.468146.
    8. D. Kayser, Th. Bothe, und W. Osten, „Scaled multisensor inspection of extended surfaces for industrial quality control“, Bd. 4777, 2002, doi: 10.1117/12.472225.
    9. D. Kayser, Th. Bothe, und W. Osten, „An integrated measurement system for the inspection of extended surfaces in industrial quality control. Proc. Intern Symposium Photonics in Measurement“, Bd. 1694, 2002.
    10. N. Kerwien, M. Totzeck, A. Tavrov, und H. J. Tiziani, „Hochauflösender quantitativer Nomarski Interferenzkontrast mit Polarisationskorrektur“, 2002.
    11. E. Kolenovic, S. Lai, W. Osten, und W. Jüptner, „A miniaturized digital holographic endoscopic system for shape and deformation measurement“, Bd. 1694, 2002.
    12. S. Lai, E. Kolenovic, W. Osten, und W. P. O. Jueptner, „deformation and 3D-shape measurement system based on phase-shifting digital holography“, in Third International Conference on Experimental Mechanics, X. Wu, Y. Qin, J. Fang, und J. Ke, Hrsg., in Third International Conference on Experimental Mechanics, vol. 4567. SPIE, Mai 2002. doi: 10.1117/12.468841.
    13. R. Legarda-Saenz, W. Osten, und W. Jueptner, „Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns“, Appl. Opt., Bd. 41, Nr. 26, Art. Nr. 26, Sep. 2002, doi: 10.1364/AO.41.005519.
    14. J. Liesener, L. Seifert, und H. J. Tiziani, „Adaptiver Shack-Hartmann-Sensor mit LCD-Mikrolinsen Poster“, 2002.
    15. W. Osten, T. Baumbach, C. Falldorf, M. K. Kalms, und W. P. O. Jueptner, „Progress with the implementation of a shearography system for the testing of technical components“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 4900, Juli 2002, doi: 10.1117/12.484540.
    16. W. Osten, T. Baumbach, und W. Jüptner, „Comparative digital holography“, Opt. Lett., Bd. 27, Nr. 20, Art. Nr. 20, Okt. 2002, doi: 10.1364/OL.27.001764.
    17. W. Osten, F. Elandaloussi, und U. Mieth, „Trends for solution of identification problems in holographic non-destructive testing (HNDT)“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 4900, Juli 2002, doi: 10.1117/12.484525.
    18. G. Pedrini, I. Alexeenko, M. Gusev, und H. J. Tiziani, „Vibration measurements of hidden object surfaces by using holographic endoscopes“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 4827, S. 315–322, Apr. 2002, doi: 10.1117/12.468149.
    19. G. Pedrini, S. Schedin, und H. J. Tiziani, „Pulsed digital holography combined with laser vibrometry for 3D measurements of vibrating objects“, Optics and Lasers in Engineering, Bd. 38, S. 117–129, Sep. 2002, doi: 10.1016/S0143-8166(02)00005-2.
    20. G. Pedrini und H. J. Tiziani, „Short-coherence digital microscopy by use of a lensless holographic imaging system“, Appl. Opt., Bd. 41, Nr. 22, Art. Nr. 22, Aug. 2002, doi: 10.1364/AO.41.004489.
    21. G. Pedrini, H. J. Tiziani, und I. Alexeenko, „Digital-holographic interferometry with an image-intensifier system“, Appl. Opt., Bd. 41, Nr. 4, Art. Nr. 4, Feb. 2002, doi: 10.1364/AO.41.000648.
    22. K.-P. Proll, J.-M. Nivet, C. Voland, und H. J. Tiziani, „Enhancement of the dynamic range of the detected intensity in an optical measurement system by a three-channel technique“, Appl. Opt., Bd. 41, Nr. 1, Art. Nr. 1, Jan. 2002, doi: 10.1364/AO.41.000130.
    23. C. Pruss, S. Reichelt, H. J. Tiziani, und V. Korolkov, „Metrological features of diffractive high-efficiency objectives for laser interferometry“, Proceedings of SPIE - The International Society for Optical Engineering, Bd. 4900, Juli 2002, doi: 10.1117/12.484473.
    24. S. Reichelt, C. Pruss, und H. J. Tiziani, „Interferometrische Absolutmessung von Asphären“, 2002.
    25. S. Reichelt, H. J. Tiziani, und R. Freimann, „Interferometrischer Absoluttest von Fresnelschen Zonenplatten“, 2002.
    26. S. Reichelt, M. Daffner, H. Tiziani, und R. Freimann, „Wavefront aberrations of rotationally symmetric CGHs fabricated by a polar coordinate laser plotter“, Journal of Modern Optics, Bd. 49, S. 1069–1087, Juni 2002, doi: 10.1080/09500340110107199.
    27. S. Reichelt, C. Pruss, und H. J. Tiziani, „New design techniques and calibration methods for CGH-null testing of aspheric surfaces“, in Proceedings of SPIE - The International Society for Optical Engineering, Proc. SPIE, Hrsg., in Proceedings of SPIE - The International Society for Optical Engineering, vol. 4778. Juni 2002. doi: 10.1117/12.473562.
    28. S. Reichelt, C. Pruss, und H. J. Tiziani, „Specification and characterization of CGHs for interferometrical optical testing“, in Proceedings of SPIE - The International Society for Optical Engineering, Proc. SPIE, Hrsg., in Proceedings of SPIE - The International Society for Optical Engineering, vol. 4778. Juni 2002. doi: 10.1117/12.473540.
    29. M. Rocktäschel und H. J. Tiziani, „Limitations of the Shack–Hartmann sensor for testing optical aspherics“, Optics and Laser Technology - OPT LASER TECHNOL, Bd. 34, S. 631–637, Nov. 2002, doi: 10.1016/S0030-3992(02)00069-5.
    30. A. K. Ruprecht, T. F. Wiesendanger, und H. J. Tiziani, „Signal evaluation for high-speed confocal measurements“, Appl. Opt., Bd. 41, Nr. 35, Art. Nr. 35, Dez. 2002, doi: 10.1364/AO.41.007410.
    31. A. Tavrov, M. Totzeck, N. Kerwien, B. R., und H. J. Tiziani, „High-resolution Jones-matrix microscopy by means of interferometry and polarimetry Poster“, 2002.
    32. A. Tavrov, M. Totzeck, N. Kerwien, und H. J. Tiziani, „Rigorous coupled-wave analysis calculus of submicrometer interference pattern and resolving edge position versus signal-to-noise ratio“, Optical Engineering - OPT ENG, Bd. 41, S. 1886–1892, Aug. 2002, doi: 10.1117/1.1490589.
    33. M. Totzeck, N. Kerwien, A. Tavrov, und H. J. Tiziani, „DUV-Mikroskpie: Mehr als nur eine Wellenlängenskalierung“, 2002.
    34. M. Totzeck, N. Kerwien, A. Tavrov, E. Rosenthal, und H. J. Tiziani, „Quantitative Zernike phase-contrast microscopy by use of structured birefringent pupil-filters and phase-shift evaluation“, in Proceedings of SPIE - The International Society for Optical Engineering, Proc. SPIE, Hrsg., in Proceedings of SPIE - The International Society for Optical Engineering, vol. 4777. Juni 2002, S. 1–11. doi: 10.1117/12.472223.
    35. M. Totzeck, A. Tavrov, N. Kerwien, und H. J. Tiziani, „Inspection of sub-wavelength structures and zero-order gratings using polarization interferometry“, in Proceedings of SPIE - The International Society for Optical Engineering, Proc. SPIE, Hrsg., in Proceedings of SPIE - The International Society for Optical Engineering, vol. 4777. Juni 2002. doi: 10.1117/12.472233.
    36. G. Wernicke u. a., „Anwendung von Wavelet-Filtern in einem optischen Prozessor zur automatischen Fehlererkennung in Interferogrammen (The Application of Wavelet Filters in Convolution Processors for the Automatic Detection of Faults in Fringe Pattern Systems)“, Tm-technisches Messen, Bd. 69, Jan. 2002, doi: 10.1524/teme.2002.69.5.236.
    37. T. Wiesendanger, Y. Yasuno, A. Ruprecht, M. Totzeck, und H. J. Tiziani, „Charakterisierung von Mikrooptikarrays durch Auswertung der axialen konfokalen Systemantwort“, 2002.
    38. T. Wiesendanger, Y. Yasuno, A. Ruprecht, T. Yatagai, und H. J. Tiziani, „Characterization of microoptic arrays by evaluation of the confocal response in axial direction“, 2002.
    39. R. Windecker, K. Körner, M. Fleischer, und H. J. Tiziani, „Signalverarbeitung bei tiefenscannenden 3D-Sensoren für neue industrielle Anwendung“, Bd. 69, 2002.
    40. R. Windecker, K. Körner, M. Fleischer, und T. H.J., „Signalverarbeitung bei tiefenscannenden 3D-Sensoren für neue industrielle Anwendungen“, Technisches Messen, Bd. 69, S. 251–257, 2002.
    41. Y. Yasuno, T. Yatagai, T. F. Wiesendanger, A. K. Ruprecht, und H. J. Tiziani, „Aberration measurement from confocal axial intensity response using neural network“, Opt. Express, Bd. 10, Nr. 25, Art. Nr. 25, Dez. 2002, doi: 10.1364/OE.10.001451.
  22. 2001

    1. R. Windecker, M. Fleischer, K. Körner, und H. J. Tiziani, „Testing micro devices with fringe projection and white-light interferometry“, Optics and Lasers in Engineering, Bd. 36, Nr. 2, Art. Nr. 2, Aug. 2001, doi: 10.1016/s0143-8166(01)00038-0.
Zum Seitenanfang