Journal Artikel

Auf dieser Seite finden Sie die neuesten gereviewten Journal Artikel des ITOs.

  1. 2024

    1. Ö. Atmaca, J. Liu, T. J. Ly, F. Bajraktari, und P. P. Pott, „Spatial sensitivity distribution assessment and Monte Carlo simulations for needle‐based bioimpedance imaging during venipuncture using the finite element method“, International Journal for Numerical Methods in Biomedical Engineering, Mai 2024, doi: 10.1002/cnm.3831.
    2. F. Rothermel u. a., „Fabrication and Characterization of a Magnetic 3D‐printed Microactuator“, Advanced Materials Technologies, Apr. 2024, doi: 10.1002/admt.202302196.
    3. M. Wende, J. Drozella, A. Toulouse, und A. M. Herkommer, „Fast vector wave optical simulation methods for application on 3D-printed microoptics“, Journal of Optical Microsystems, Bd. 4, Nr. 2, Art. Nr. 2, 2024, doi: 10.1117/1.JOM.4.2.024501.
  2. 2023

    1. S. Amann, T. Haist, A. Gatto, M. Kamm, und A. Herkommer, „Design and realization of a miniaturized high resolution computed tomography imaging spectrometer“, Journal of the European Optical Society-Rapid Publications, Bd. 19, Nr. 2, Art. Nr. 2, 2023, doi: 10.1051/jeos/2023027.
    2. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, und A. Herkommer, „3D printing of colored micro-optics“, Optical Materials Express, Bd. 13, Nr. 5, Art. Nr. 5, Apr. 2023, doi: 10.1364/ome.489681.
    3. R. Beisswanger, C. Pruss, und S. Reichelt, „Retrace error calibration for interferometric measurements using an unknown optical system“, Opt. Express, Bd. 31, Nr. 17, Art. Nr. 17, Aug. 2023, doi: 10.1364/OE.496059.
    4. C. M. Bett, M. Daiber-Huppert, K. Frenner, und W. Osten, „Evaluation of a time-gated-single-pixel-camera as a promising sensor for autonomous vehicles in harsh weather conditions“, Journal of the European Optical Society-Rapid Publications, Bd. 19, Nr. 1, Art. Nr. 1, 2023, doi: 10.1051/jeos/2023023.
    5. S. Crowell, T. Haist, M. Tscherpel, J. Caron, E. Burgh, und B. Moore III, „Performance and polarization response of slit homogenizers for the GeoCarb mission“, Atmospheric Measurement Techniques, Bd. 16, Nr. 1, Art. Nr. 1, 2023, doi: 10.5194/amt-16-195-2023.
    6. D. Didychenko u. a., „Generation of a radially polarized beam in a polycrystalline ceramic Yb:Lu2O3 thin-disk laser“, Applied Physics B, Bd. 129, Nr. 9, Art. Nr. 9, Aug. 2023, doi: 10.1007/s00340-023-08089-6.
    7. F. Fischer, K. Frenner, M. Granai, F. Fend, und A. Herkommer, „Data-driven development of sparse multi-spectral sensors for urological tissue differentiation“, Journal of the European Optical Society-Rapid Publications, Bd. 19, Nr. 1, Art. Nr. 1, 2023, doi: 10.1051/jeos/2023030.
    8. L. Fu, M. Daiber-Huppert, K. Frenner, und W. Osten, „Simulation of realistic speckle fields by using surface integral equation and multi-level fast multipole method“, Optics and Lasers in Engineering, Bd. 162, S. 107438, März 2023, doi: 10.1016/j.optlaseng.2022.107438.
    9. A. Gröger, G. Pedrini, D. Claus, I. Alekseenko, F. Gloeckler, und S. Reichelt, „Advantages of holographic imaging through fog“, Applied Optics, Bd. 62, Nr. 10, Art. Nr. 10, Jan. 2023, doi: 10.1364/ao.478435.
    10. A. Gröger, G. Pedrini, F. Fischer, D. Claus, I. Aleksenko, und S. Reichelt, „Two-wavelength digital holography through fog“, Journal of the European Optical Society-Rapid Publications, Bd. 19, Nr. 1, Art. Nr. 1, 2023, doi: 10.1051/jeos/2023024.
    11. T. Haist, R. Hahn, und K. Michel, „Imaging device for imaging at least one object“. Google Patents, 2023.
    12. T. Haist, R. Hahn, und S. Reichelt, „Diffraction-based dual path multispectral imaging“, tm - Technisches Messen, 2023, doi: doi:10.1515/teme-2023-0007.
    13. S. Hartlieb, C. Schober, T. Haist, und S. Reichelt, „Field evaluation of a novel holographic single-image depth reconstruction sensor“, Journal of the European Optical Society-Rapid Publications, Bd. 19, Nr. 1, Art. Nr. 1, 2023, doi: 10.1051/jeos/2023017.
    14. H. Li, L. Fu, K. Frenner, und W. Osten, „Design studies of a far-field plasmonic superlens with an enlarged field of view“, Optical Materials, Bd. 138, S. 113688, Apr. 2023, doi: 10.1016/j.optmat.2023.113688.
    15. J. Liu, Ö. Atmaca, und P. P. Pott, „Needle-Based Electrical Impedance Imaging Technology for Needle Navigation“, Bioengineering, Bd. 10, Nr. 5, Art. Nr. 5, 2023, doi: 10.3390/bioengineering10050590.
    16. M. Raza, Y. Chen, J. Trapp, H. Sun, X. Huang, und W. Ren, „Smoldering peat fire detection by time-resolved measurements of transient CO2 and CH4 emissions using a novel dual-gas optical sensor“, Fuel, Bd. 334, S. 126750, Feb. 2023, doi: 10.1016/j.fuel.2022.126750.
    17. S. Wagner u. a., „Injection Molding of Encapsulated Diffractive Optical Elements“, Micromachines, Bd. 14, Nr. 6, Art. Nr. 6, 2023, doi: 10.3390/mi14061223.
    18. M. Wende, J. Drozella, und A. M. Herkommer, „Fast bidirectional vector wave propagation method showcased on targeted noise reduction in imaging fiber bundles using 3D-printed micro optics“, Optics Express, Bd. 31, Nr. 18, Art. Nr. 18, Aug. 2023, doi: 10.1364/oe.497244.
    19. J. Wu u. a., „Linear scalability of dense-pattern Herriott-type multipass cell design“, Applied Physics B, Bd. 129, Nr. 6, Art. Nr. 6, Mai 2023, doi: 10.1007/s00340-023-08031-w.
  3. 2022

    1. M. A. Ahmed u. a., „High-power thin-disk lasers emitting beams with axially-symmetric polarizations“, Nanophotonics, Bd. 11, Nr. 4, Art. Nr. 4, 2022, doi: doi:10.1515/nanoph-2021-0606.
    2. S. Amann, T. Haist, A. Gatto, M. Kamm, und A. Herkommer, „Design and realization of a miniaturized high resolution computed tomography imaging spectrometer“, EPJ Web of Conferences, Bd. 266, S. 02001, 2022, doi: 10.1051/epjconf/202226602001.
    3. V. Aslani, F. Guerra, A. Steinitz, P. Wilhelm, und T. Haist, „Averaging approaches for highly accurate image-based edge localization“, Optics Continuum, Bd. 1, Nr. 4, Art. Nr. 4, Apr. 2022, doi: 10.1364/optcon.453537.
    4. L. Becker u. a., „Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids“, International Journal of Molecular Sciences, Bd. 23, Nr. 13, Art. Nr. 13, 2022, doi: 10.3390/ijms23136956.
    5. R. Beisswanger, M. Weckerle, C. Pruss, und S. Reichelt, „Interferometric radius of curvature measurements: an environmental error treatment“, Optics Express, Bd. 30, Nr. 14, Art. Nr. 14, Juli 2022, doi: 10.1364/oe.461972.
    6. L. Bremer u. a., „Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots“, Opt. Express, Bd. 30, Nr. 10, Art. Nr. 10, Mai 2022, doi: 10.1364/OE.456777.
    7. A. Faulhaber, C. Krächan, und T. Haist, „Depth from axial differential perspective“, Optics Continuum, Bd. 1, Nr. 1, Art. Nr. 1, Jan. 2022, doi: 10.1364/optcon.451413.
    8. F. Fischer, A. Birk, P. Somers, K. Frenner, C. Tarín, und A. Herkommer, „FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks“, Machine Learning and Knowledge Extraction, Bd. 4, Nr. 4, Art. Nr. 4, 2022, doi: 10.3390/make4040049.
    9. L. Fu, M. Daiber-Huppert, K. Frenner, und W. Osten, „Simulation of Realistic Speckle Fields by Using Surface Integral Equation and Fast Multipole Method“, SSRN eLibrary, 2022, doi: 10.2139/ssrn.4160509.
    10. A. Gronle, C. Pruss, und A. Herkommer, „Misalignment of spheres, aspheres and freeforms in optical measurement systems“, Optics Express, Bd. 30, Nr. 2, Art. Nr. 2, Jan. 2022, doi: 10.1364/oe.443420.
    11. F. Guerra, P. Wilhelm, und T. Haist, „Holographic Wide-Angle System for Deformation Measurement of Extended Structures“, Optics, Bd. 3, Nr. 1, Art. Nr. 1, 2022, doi: 10.3390/opt3010010.
    12. R. Hahn, T. Haist, K. Michel, und W. Osten, „Diffraction-based hyperspectral snapshot imager“, Optical Engineering, Bd. 61, Nr. 1, Art. Nr. 1, 2022, doi: 10.1117/1.OE.61.1.015106.
    13. T. Haist, R. Hahn, und S. Reichelt, „Areal multispectral sensor with variable choice of spatial and spectral resolution“, Forum Bildverarbeitung 2022, Bd. 2022, 2022.
    14. S. Hartlieb, C. Schober, T. Haist, und S. Reichelt, „Accurate single image depth detection using multiple rotating point spread functions“, Optics Express, Bd. 30, Nr. 13, Art. Nr. 13, Juni 2022, doi: 10.1364/oe.458541.
    15. R. Li, G. Pedrini, Z. Huang, S. Reichelt, und L. Cao, „Physics-enhanced neural network for phase retrieval from two diffraction patterns“, Opt. Express, Bd. 30, Nr. 18, Art. Nr. 18, Aug. 2022, doi: 10.1364/OE.469080.
    16. W. Osten und G. Pedrini, „55 Years of Holographic Non-Destructive Testing and Experimental Stress Analysis: Is there still Progress to be expected?“, Light: Advanced Manufacturing, Bd. 3, Nr. 1, Art. Nr. 1, 2022, doi: 10.37188/lam.2022.008.
    17. M. Ringkowski, E. Arnold, S. Hartlieb, T. Haist, W. Osten, und O. Sawodny, „Precision tracking control of a dual-stage measuring machine“, at - Automatisierungstechnik, Bd. 70, Nr. 7, Art. Nr. 7, 2022, doi: doi:10.1515/auto-2021-0165.
    18. P. Ruchka u. a., „Microscopic 3D printed optical tweezers for atomic quantum technology“, Quantum Science and Technology, Bd. 7, Nr. 4, Art. Nr. 4, Juli 2022, doi: 10.1088/2058-9565/ac796c.
    19. A. Schiebelbein und G. Pedrini, „Lensless phase imaging microscopy using multiple intensity diffraction patterns obtained under coherent and partially coherent illumination“, Appl. Opt., Bd. 61, Nr. 5, Art. Nr. 5, Feb. 2022, doi: 10.1364/AO.444824.
    20. M. D. Schmid, A. Toulouse, S. Thiele, S. Mangold, A. M. Herkommer, und H. Giessen, „3D Direct Laser Writing of Highly Absorptive Photoresist for Miniature Optical Apertures“, Advanced Functional Materials, S. 2211159, Dez. 2022, doi: 10.1002/adfm.202211159.
    21. C. Schober, R. Beisswanger, A. Gronle, C. Pruss, und W. Osten, „Tilted Wave Fizeau Interferometer for flexible and robust asphere and freeform testing“, Light: Advanced Manufacturing, Bd. 3, Nr. 4, Art. Nr. 4, 2022, doi: 10.37188/lam.2022.048.
    22. J. Schwab u. a., „Coupling light emission of single-photon sources into single-mode fibers: mode matching, coupling efficiencies, and thermo-optical effects“, Opt. Express, Bd. 30, Nr. 18, Art. Nr. 18, Aug. 2022, doi: 10.1364/OE.465101.
    23. A. Toulouse u. a., „Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design“, Opt. Express, Bd. 30, Nr. 2, Art. Nr. 2, Jan. 2022, doi: 10.1364/OE.439963.
    24. A. Toulouse u. a., „High resolution femtosecond direct laser writing with wrapped lens“, Opt. Mater. Express, Bd. 12, Nr. 9, Art. Nr. 9, Sep. 2022, doi: 10.1364/OME.468534.
    25. S. Walz, V. Aslani, O. Sawodny, und A. Stenzl, „Robotic radical cystectomy – more precision needed?“, Current Opinion in Urology, Bd. Publish Ahead of Print, Dez. 2022, doi: 10.1097/mou.0000000000001072.
    26. M. Wende, J. Drozella, A. Toulouse, und A. M. Herkommer, „Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method“, Optics Express, Bd. 30, Nr. 22, Art. Nr. 22, Okt. 2022, doi: 10.1364/oe.469178.
    27. M. Zimmermann, S. Amann, M. Mel, T. Haist, und A. Gatto, „Deep learning-based hyperspectral image reconstruction from emulated and real computed tomography imaging spectrometer data“, Optical Engineering, Bd. 61, Nr. 5, Art. Nr. 5, 2022, doi: 10.1117/1.OE.61.5.053103.
  4. 2021

    1. Y. Arezki u. a., „Traceable Reference Full Metrology Chain for Innovative Aspheric and Freeform Optical Surfaces Accurate at the Nanometer Level“, Sensors, Bd. 21, Nr. 4, Art. Nr. 4, 2021, doi: 10.3390/s21041103.
    2. F. Beirow u. a., „Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures“, OSA Continuum, Bd. 4, Nr. 2, Art. Nr. 2, Jan. 2021, doi: 10.1364/osac.414100.
    3. A. Birk, Y. Wilhelm, S. Dreher, C. Flack, P. Reimann, und C. Gröger, „A Real-World Application of Process Mining for Data-Driven Analysis of Multi-Level Interlinked Manufacturing Processes“, Procedia CIRP, Bd. 104, S. 417--422, 2021, doi: 10.1016/j.procir.2021.11.070.
    4. D. Claus, I. Alekseenko, M. Grabherr, G. Pedrini, und R. Hibst, „Snap-shot topography measurement via dual-VCSEL and dual wavelength digital holographic interferometry“, Light: Advanced Manufacturing, Bd. 2, Nr. 4, Art. Nr. 4, 2021, doi: 10.37188/lam.2021.029.
    5. F. Glöckler, F. Hausladen, I. Alekseenko, A. Gröger, G. Pedrini, und D. Claus, „Two-photon-polymerization enabled and enhanced multi-channel fibre switch“, Engineering Research Express, Bd. 3, Nr. 4, Art. Nr. 4, Nov. 2021, doi: 10.1088/2631-8695/ac34c5.
    6. M. L. Gödecke, K. Frenner, und W. Osten, „Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry“, Light: Advanced Manufacturing, Bd. 2, Nr. 2, Art. Nr. 2, 2021, doi: 10.37188/lam.2021.018.
    7. N. Harland u. a., „Organoide zur Weiterentwicklung der intraoperativen Diagnostik“, Der Urologe, Bd. 60, Nr. 9, Art. Nr. 9, Sep. 2021, doi: 10.1007/s00120-021-01595-5.
    8. S. Hartlieb, M. Ringkowski, T. Haist, O. Sawodny, und W. Osten, „Multi-positional image-based vibration measurement by holographic image replication“, Light: Advanced Manufacturing, Bd. 2, Nr. 4, Art. Nr. 4, 2021, doi: 10.37188/lam.2021.032.
    9. S. Hartlieb u. a., „Highly accurate imaging based position measurement using holographic point replication“, Measurement, Bd. 172, S. 108852, Feb. 2021, doi: 10.1016/j.measurement.2020.108852.
    10. S. Ludwig, G. Pedrini, X. Peng, und W. Osten, „Single-pixel scatter-plate microscopy“, Opt. Lett., Bd. 46, Nr. 10, Art. Nr. 10, Mai 2021, doi: 10.1364/OL.420593.
    11. S. Ludwig, P. Ruchka, G. Pedrini, X. Peng, und W. Osten, „Scatter-plate microscopy with spatially coherent illumination and temporal scatter modulation“, Opt. Express, Bd. 29, Nr. 3, Art. Nr. 3, Feb. 2021, doi: 10.1364/OE.412047.
    12. H. Pang, T. Haist, und T. Haecker, „Absorption of tailored laser beams within 3D laser cutting kerfs“, Journal of Laser Applications, Bd. 33, Nr. 3, Art. Nr. 3, Juni 2021, doi: 10.2351/7.0000408.
    13. G. Pedrini und D. Claus, „Phase retrieval using bidirectional interference“, Appl. Opt., Bd. 60, Nr. 12, Art. Nr. 12, Apr. 2021, doi: 10.1364/AO.415927.
    14. C. Schober, C. Pruss, A. Faulhaber, und A. Herkommer, „Event based coherence scanning interferometry“, Optics Letters, Bd. 46, Nr. 17, Art. Nr. 17, Aug. 2021, doi: 10.1364/ol.437489.
    15. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, und A. Herkommer, „3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint“, Light: Advanced Manufacturing, Bd. 2, Nr. 1, Art. Nr. 1, 2021, doi: 10.37188/lam.2021.002.
  5. 2020

    1. I. Alekseenko u. a., „Residual Stress Evaluation in Ceramic Coating Under Industrial Conditions by Digital Holography“, IEEE Transactions on Industrial Informatics, Bd. 16, Nr. 2, Art. Nr. 2, Feb. 2020, doi: 10.1109/TII.2019.2939972.
    2. A. Asadollahbaik u. a., „Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses“, ACS Photonics, Bd. 7, Nr. 1, Art. Nr. 1, Jan. 2020, doi: 10.1021/acsphotonics.9b01024.
    3. C. Flack, S. Dreher, A. Birk, und Y. Wilhelm, „Process Mining in der Produktion“, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Bd. 115, Nr. 11, Art. Nr. 11, Nov. 2020, doi: 10.3139/104.112459.
    4. I. Fortmeier u. a., „Round robin comparison study on the form measurement of optical freeform surfaces“, Journal of the European Optical Society-Rapid Publications, Bd. 16, Nr. 1, Art. Nr. 1, Jan. 2020, doi: 10.1186/s41476-019-0124-1.
    5. F. Guerra, T. Haist, A. Warsewa, S. Hartlieb, W. Osten, und C. Tar\’ın, „Precise building deformation measurement using holographic multipoint replication“, Applied Optics, Bd. 59, Nr. 9, Art. Nr. 9, März 2020, doi: 10.1364/ao.385594.
    6. M. L. Gödecke, C. M. Bett, D. Buchta, K. Frenner, und W. Osten, „Optical sensor design for fast and process-robust position measurements on small diffraction gratings“, Optics and Lasers in Engineering, Bd. 134, S. 106267, Nov. 2020, doi: 10.1016/j.optlaseng.2020.106267.
    7. R. Hahn u. a., „Detailed characterization of a mosaic based hyperspectral snapshot imager“, Optical Engineering, Bd. 59, Nr. 12, Art. Nr. 12, 2020, doi: 10.1117/1.OE.59.12.125102.
    8. S. Hartlieb u. a., „Hochgenaue Kalibrierung eines holografischen Multi-Punkt-Positionsmesssystems“, tm - Technisches Messen, Bd. 87, Nr. 7–8, Art. Nr. 7–8, 2020, doi: doi:10.1515/teme-2019-0153.
    9. H. Pang, T. Haecker, A. Bense, T. Haist, und D. Flamm, „Focal field analysis of highly multi-mode fiber beams based on modal decomposition“, Applied Optics, Bd. 59, Nr. 22, Art. Nr. 22, Juli 2020, doi: 10.1364/ao.397498.
    10. M. Ringkowski, O. Sawodny, S. Hartlieb, T. Haist, und W. Osten, „Estimating dynamic positioning errors of coordinate measuring machines“, Mechatronics, Bd. 68, S. 102383, Juni 2020, doi: 10.1016/j.mechatronics.2020.102383.
    11. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, und H. Giessen, „Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components“, Opt. Mater. Express, Bd. 10, Nr. 10, Art. Nr. 10, Okt. 2020, doi: 10.1364/OME.401724.
    12. S. Schmidt u. a., „Tailored micro-optical freeform holograms for integrated complex beam shaping“, Optica, Bd. 7, Nr. 10, Art. Nr. 10, Okt. 2020, doi: 10.1364/OPTICA.395177.
    13. R. Su u. a., „Lens aberration compensation in interference microscopy“, Optics and Lasers in Engineering, Bd. 128, S. 106015, Mai 2020, doi: 10.1016/j.optlaseng.2020.106015.
    14. A. Warsewa u. a., „Self-tuning state estimation for adaptive truss structures using strain gauges and camera-based position measurements“, Mechanical Systems and Signal Processing, Bd. 143, S. 106822, Sep. 2020, doi: 10.1016/j.ymssp.2020.106822.
  6. 2019

    1. T. Haist, C. Reichert, und ..., „Camera-based measurement of vital signs“, TM …, 2019.
    2. S. Ludwig, B. L. Teurnier, G. Pedrini, X. Peng, und W. Osten, „Image reconstruction and enhancement by deconvolution in scatter-plate microscopy“, Opt. Express, Bd. 27, Nr. 16, Art. Nr. 16, Aug. 2019, doi: 10.1364/OE.27.023049.
    3. G. Pedrini, I. Alekseenko, G. Jagannathan, M. Kempenaars, G. Vayakis, und W. Osten, „Feasibility study of digital holography for erosion measurements under extreme environmental conditions inside the International Thermonuclear Experimental Reactor tokamak \invited\“, Appl. Opt., Bd. 58, Nr. 5, Art. Nr. 5, Feb. 2019, doi: 10.1364/AO.58.00A147.
    4. M. Roeder u. a., „Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding“, Journal of Manufacturing Processes, Bd. 47, S. 402--409, Nov. 2019, doi: 10.1016/j.jmapro.2019.10.012.
    5. S. Thiele, C. Pruss, A. M. Herkommer, und H. Giessen, „3D printed stacked diffractive microlenses“, Optics Express, Bd. 27, Nr. 24, Art. Nr. 24, Nov. 2019, doi: 10.1364/oe.27.035621.
    6. F. Würtenberger, T. Haist, C. Reichert, A. Faulhaber, T. Boettcher, und A. Herkommer, „Optimum Wavelengths in the Near Infrared for Imaging Photoplethysmography“, IEEE Transactions on Biomedical Engineering, Bd. 66, Nr. 10, Art. Nr. 10, Okt. 2019, doi: 10.1109/TBME.2019.2897284.
  7. 2018

    1. A. Baumgartner, S. Amann, M. Werz, A. Herkommer, M. Dressel, und S. Fella, „Near-infrared optical investigations of snow, ice, and water layers on diffuse reflecting surfaces“, Review of Scientific Instruments, Bd. 89, Nr. 12, Art. Nr. 12, Dez. 2018, doi: 10.1063/1.5049652.
    2. D. Buchta, C. Heinemann, G. Pedrini, C. Krekel, und W. Osten, „Combination of FEM simulations and shearography for defect detection on artwork“, Strain, Bd. 54, Nr. 3, Art. Nr. 3, Jan. 2018, doi: 10.1111/str.12269.
    3. D. Buchta, H. Serbes, D. Claus, G. Pedrini, und W. Osten, „Soft tissue elastography via shearing interferometry“, Journal of Medical Imaging, Bd. 5, Nr. 4, Art. Nr. 4, 2018, doi: 10.1117/1.JMI.5.4.046001.
    4. D. Claus und G. Pedrini, „Ptychography: quantitative phase imaging with incoherent imaging properties“, in Unconventional Optical Imaging, C. Fournier, M. P. Georges, und G. Popescu, Hrsg., in Unconventional Optical Imaging, vol. 10677. SPIE, 2018, S. 106771E. doi: 10.1117/12.2313110.
    5. D. Claus, G. Pedrini, T. Boettcher, M. Taphanel, W. Osten, und R. Hibst, „Development of a realistic wave propagation-based chromatic confocal microscopy model“, in Unconventional Optical Imaging, C. Fournier, M. P. Georges, und G. Popescu, Hrsg., in Unconventional Optical Imaging, vol. 10677. SPIE, 2018, S. 106770X. doi: 10.1117/12.2314914.
    6. D. Claus, G. Pedrini, D. Buchta, und W. Osten, „Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography“, J. Opt. Soc. Am. A, Bd. 35, Nr. 4, Art. Nr. 4, Apr. 2018, doi: 10.1364/JOSAA.35.000546.
    7. D. Claus, J. Hennenlotter, Q. Liting, G. Pedrini, A. Stenzl, und W. Osten, „Variable Wavefront Curvature Phase Retrieval Compared to Off-Axis Holography and Its Useful Application to Support Intraoperative Tissue Discrimination“, Applied Sciences, Bd. 8, Nr. 11, Art. Nr. 11, 2018, doi: 10.3390/app8112147.
    8. T. Dietrich u. a., „Thin-disk oscillator delivering radially polarized beams with up to 9800.167em0.167emW of CW output power“, Optics Letters, Bd. 43, Nr. 6, Art. Nr. 6, März 2018, doi: 10.1364/ol.43.001371.
    9. A. Faulhaber u. a., „Dynamic holography for speckle noise reduction in hybrid measurement system“, in Laser Beam Shaping XVIII, A. Dudley und A. V. Laskin, Hrsg., in Laser Beam Shaping XVIII, vol. 10744. SPIE, 2018, S. 107440J. doi: 10.1117/12.2320486.
    10. G. Hagen, A. Harsch, und R. Moos, „A pathway to eliminate the gas flow dependency of a hydrocarbon sensor for automotive exhaust applications“, Journal of Sensors and Sensor Systems, Bd. 7, Nr. 1, Art. Nr. 1, 2018, doi: 10.5194/jsss-7-79-2018.
    11. A. Keck, O. Sawodny, M. Gronle, T. Haist, und W. Osten, „Model-Based Compensation of Dynamic Errors in Measuring Machines and Machine Tools“, IEEE/ASME Transactions on Mechatronics, Bd. 23, Nr. 5, Art. Nr. 5, Okt. 2018, doi: 10.1109/TMECH.2018.2868012.
    12. H. Li, L. Fu, K. Frenner, und W. Osten, „Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength“, Optics Express, Bd. 26, Nr. 15, Art. Nr. 15, Juli 2018, doi: 10.1364/oe.26.019574.
    13. H. Li, L. Fu, K. Frenner, und W. Osten, „Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength“, Optics Express, Bd. 26, Nr. 8, Art. Nr. 8, Apr. 2018, doi: 10.1364/oe.26.010888.
    14. F. Schaal u. a., „Optically addressed modulator for tunable spatial polarization control“, Optics Express, Bd. 26, Nr. 21, Art. Nr. 21, Okt. 2018, doi: 10.1364/oe.26.028119.
    15. R. Schachtschneider u. a., „Interlaboratory comparison measurements of aspheres“, Measurement Science and Technology, Bd. 29, Nr. 5, Art. Nr. 5, Apr. 2018, doi: 10.1088/1361-6501/aaae96.
    16. A. Toulouse, S. Thiele, H. Giessen, und A. M. Herkommer, „Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics“, Opt. Lett., Bd. 43, Nr. 21, Art. Nr. 21, Nov. 2018, doi: 10.1364/OL.43.005283.
  8. 2017

    1. A. Bielke, C. Pruss, und W. Osten, „Design of a variable diffractive zoom lens for interferometric purposes“, Optical Engineering, Bd. 56, Nr. 1, Art. Nr. 1, 2017, doi: 10.1117/1.OE.56.1.014104.
    2. B. Bilski, K. Frenner, und W. Osten, „Effective–CD: a contribution toward the consideration of line edge roughness in the scatterometric critical dimension metrology“, Journal of Micro/Nanolithography, MEMS, and MOEMS, Bd. 16, Nr. 2, Art. Nr. 2, 2017, doi: 10.1117/1.JMM.16.2.024002.
    3. D. Buchta, C. Heinemann, G. Pedrini, C. Krekel, und W. Osten, „Lock-in-shearography for the detection of transport-induced damages on artwork“, in Optics for Arts, Architecture, and Archaeology VI, L. Pezzati und P. Targowski, Hrsg., in Optics for Arts, Architecture, and Archaeology VI, vol. 10331. SPIE, 2017, S. 103310G. doi: 10.1117/12.2270278.
    4. D. Claus u. a., „Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation (erratum)“, Journal of Medical Imaging, Bd. 4, Nr. 2, Art. Nr. 2, 2017, doi: 10.1117/1.JMI.4.2.029801.
    5. D. Claus u. a., „Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation“, Journal of Medical Imaging, Bd. 4, Nr. 1, Art. Nr. 1, 2017, doi: 10.1117/1.JMI.4.1.014505.
    6. D. Claus, G. Pedrini, und W. Osten, „Iterative phase retrieval based on variable wavefront curvature“, Appl. Opt., Bd. 56, Nr. 13, Art. Nr. 13, Mai 2017, doi: 10.1364/AO.56.00F134.
    7. M. Eckerle u. a., „High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses“, Applied Physics B, Bd. 123, Nr. 5, Art. Nr. 5, Apr. 2017, doi: 10.1007/s00340-017-6720-0.
    8. B. Frank u. a., „Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface“, Science Advances, Bd. 3, Nr. 7, Art. Nr. 7, Juli 2017, doi: 10.1126/sciadv.1700721.
    9. S. Gharbi, H. Pang, C. Lingel, T. Haist, und W. Osten, „Reduction of chromatic dispersion using multiple carrier frequency patterns in SLM-based microscopy“, Applied optics, 2017, [Online]. Verfügbar unter: https://www.osapublishing.org/abstract.cfm?uri=ao-56-23-6688
    10. C. S. Narayanamurthy, G. Pedrini, und W. Osten, „Digital holographic photoelasticity“, Appl. Opt., Bd. 56, Nr. 13, Art. Nr. 13, Mai 2017, doi: 10.1364/AO.56.00F213.
    11. C. Pruss, G. B. Baer, J. Schindler, und W. Osten, „Measuring aspheres quickly: tilted wave interferometry“, Optical Engineering, Bd. 56, Nr. 11, Art. Nr. 11, 2017, doi: 10.1117/1.OE.56.11.111713.
    12. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, und W. Osten, „Exploiting scattering media for exploring 3D objects“, Light: Science & Applications, Bd. 6, Nr. 2, Art. Nr. 2, Feb. 2017, doi: 10.1038/lsa.2016.219.
    13. A. K. Singh, G. Pedrini, M. Takeda, und W. Osten, „Scatter-plate microscope for lensless microscopy with diffraction limited resolution“, Scientific Reports, Bd. 7, Nr. 1, Art. Nr. 1, Sep. 2017, doi: 10.1038/s41598-017-10767-3.
    14. H. Yang, T. Haist, M. Gronle, und W. Osten, „Simulation of microscopic metal surfaces based on measured microgeometry“, tm - Technisches Messen, Bd. 84, Nr. 7–8, Art. Nr. 7–8, 2017, doi: doi:10.1515/teme-2017-0019.
    15. M. Zhou, A. K. Singh, G. Pedrini, W. Osten, J. Min, und B. Yao, „Speckle-correlation imaging through scattering media with hybrid bispectrum-iteration algorithm“, Optical Engineering, Bd. 56, Nr. 12, Art. Nr. 12, 2017, doi: 10.1117/1.OE.56.12.123102.
  9. 2016

    1. M. Eckerle u. a., „Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses“, Optics Letters, Bd. 41, Nr. 7, Art. Nr. 7, Apr. 2016, doi: 10.1364/ol.41.001680.
    2. L. Fu u. a., „Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry“, Opt. Express, Bd. 24, Nr. 24, Art. Nr. 24, Nov. 2016, doi: 10.1364/OE.24.028056.
    3. Y. Huang u. a., „Absolute test for cylindrical surfaces using the conjugate differential method“, Optical Engineering, Bd. 55, Nr. 11, Art. Nr. 11, 2016, doi: 10.1117/1.OE.55.11.114104.
    4. A. Keck, O. Sawodny, M. Gronle, T. Haist, und W. Osten, „Active Compensation of Dynamic Errors in a Coordinate-Measuring Machine“, IFAC-PapersOnLine, Bd. 49, Nr. 21, Art. Nr. 21, 2016, doi: 10.1016/j.ifacol.2016.10.672.
    5. D. Khodadad, A. K. Singh, G. Pedrini, und M. Sjödahl, „Full-field 3D deformation measurement: comparison between speckle phase and displacement evaluation“, Appl. Opt., Bd. 55, Nr. 27, Art. Nr. 27, Sep. 2016, doi: 10.1364/AO.55.007735.
    6. C. Lingel, T. Haist, und W. Osten, „Spatial-light-modulator-based adaptive optical system for the use of multiple phase retrieval methods“, Appl. Opt., Bd. 55, Nr. 36, Art. Nr. 36, Dez. 2016, doi: 10.1364/AO.55.010329.
    7. G. Pedrini u. a., „Residual Stress Analysis of Ceramic Coating by Laser Ablation and Digital Holography“, Experimental Mechanics, Bd. 56, Nr. 5, Art. Nr. 5, Juni 2016, doi: 10.1007/s11340-015-0120-3.
    8. G. Pedrini u. a., „Analyse von Eigenspannungen in beschichteten Oberflächen durch Laser-Ablation und digitale Holographie“, in Form- und Konturmesstechnik 2016, in Form- und Konturmesstechnik 2016. , VDI Verlag, 2016, S. 77--86. doi: 10.51202/9783181022856-77.
    9. S. Peterhänsel, M. L. Gödecke, K. Frenner, und W. Osten, „Phase-structured illumination as a tool to detect nanometer asymmetries“, Journal of Micro/Nanolithography, MEMS, and MOEMS, Bd. 15, Nr. 4, Art. Nr. 4, 2016, doi: 10.1117/1.JMM.15.4.044005.
    10. J. Schindler, P. Schau, N. Brodhag, K. Frenner, und W. Osten, „Retrieving the axial position of fluorescent light emitting spots by shearing interferometry“, Journal of Biomedical Optics, Bd. 21, Nr. 12, Art. Nr. 12, 2016, doi: 10.1117/1.JBO.21.12.125009.
    11. A. Siller, C. Pruß, D. Hopp, und W. Osten, „Neuer Sensor zur exakten Bestimmung von Drehwinkeln“, MTZ - Motortechnische Zeitschrift, Bd. 77, Nr. 4, Art. Nr. 4, Apr. 2016, doi: 10.1007/s35146-016-0012-9.
    12. A. Siller, C. Pruß, D. Hopp, und W. Osten, „Novel Sensor for Accurate Measurement of Rotary Angles“, MTZ worldwide, Bd. 77, Nr. 4, Art. Nr. 4, Apr. 2016, doi: 10.1007/s38313-016-0009-2.
    13. A. K. Singh, G. Pedrini, X. Peng, und W. Osten, „Nanoscale measurement of in-plane and out-of-plane displacements of microscopic object by sensor fusion“, Optical Engineering, Bd. 55, Nr. 12, Art. Nr. 12, 2016, doi: 10.1117/1.OE.55.12.121722.
    14. M. Takeda, A. K. Singh, D. N. Naik, G. Pedrini, und W. Osten, „Holographic Correloscopy—Unconventional Holographic Techniques For Imaging a Three-Dimensional Object Through an Opaque Diffuser or Via a Scattering Wall: A Review“, IEEE Transactions on Industrial Informatics, Bd. 12, Nr. 4, Art. Nr. 4, Aug. 2016, doi: 10.1109/TII.2015.2503641.
    15. P. Weidmann u. a., „Evaluation of Residual Stress Determinations Conducted with Laser Ablation and Optical Displacement Measurement“, in Residual Stresses 2016, in Residual Stresses 2016. Materials Research Forum LLC, Dez. 2016. doi: 10.21741/9781945291173-55.
    16. P. Weidmann, U. Weber, S. Schmauder, G. Pedrini, und W. Osten, „Numerical calculation of temperature and surface topology during a laser ablation process for ceramic coatings“, Meccanica, Bd. 51, Nr. 2, Art. Nr. 2, Feb. 2016, doi: 10.1007/s11012-015-0220-2.
    17. E. Zschau und S. Reichelt, „Head- and Eye-Tracking Solutions for Autostereoscopic and Holographic 3D Displays“, in Handbook of Visual Display Technology, J. Chen, W. Cranton, und M. Fihn, Hrsg., in Handbook of Visual Display Technology. , Cham: Springer International Publishing, 2016, S. 2625--2649. doi: 10.1007/978-3-319-14346-0_114.
  10. 2015

    1. D. Buchta, N. Hein, G. Pedrini, C. Krekel, und W. Osten, „Artwork Inspection by Shearography with Adapted Loading“, Experimental Mechanics, Bd. 55, Nr. 9, Art. Nr. 9, Nov. 2015, doi: 10.1007/s11340-015-0070-9.
    2. A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. den Boef, und W. Osten, „Phase-sensitive structured illumination to detect nanosized asymmetries in silicon trenches“, Journal of Micro/Nanolithography, MEMS, and MOEMS, Bd. 14, Nr. 2, Art. Nr. 2, 2015, doi: 10.1117/1.JMM.14.2.021104.
    3. T. Haist, M. Gronle, D. Bui, und W. Osten, „Holografische mehrpunktgenerierung zur positionsanalyse“, tm-Technisches Messen, 2015, [Online]. Verfügbar unter: https://www.degruyter.com/view/j/teme.2015.82.issue-5/teme-2014-0039/teme-2014-0039.xml
    4. T. Haist und W. Osten, „Holography using pixelated spatial light modulators—part 1: theory and basic considerations“, Journal of Micro/Nanolithography, MEMS …, 2015, [Online]. Verfügbar unter: https://www.spiedigitallibrary.org/journals/Journal-of-MicroNanolithography-MEMS-and-MOEMS/volume-14/issue-4/041310/Holography-using-pixelated-spatial-light-modulatorspart-1--theory-and/10.1117/1.JMM.14.4.041310.short
    5. T. Haist und W. Osten, „Holography using pixelated spatial light modulators—Part 2: applications“, Journal of Micro/Nanolithography, MEMS …, 2015, [Online]. Verfügbar unter: https://www.spiedigitallibrary.org/journals/Journal-of-MicroNanolithography-MEMS-and-MOEMS/volume-14/issue-4/041311/Holography-using-pixelated-spatial-light-modulatorsPart-2-applications/10.1117/1.JMM.14.4.041311.short
    6. T. Haist, M. Gronle, D. A. Bui, und W. Osten, „Holographic multipoint generation for sensing positions“, TM-TECHNISCHES MESSEN, Bd. 82, Nr. 5, Art. Nr. 5, 2015.
    7. T. Haist, A. Peter, und W. Osten, „Holographic projection with field-dependent aberration correction“, Optics Express, Bd. 23, Nr. 5, Art. Nr. 5, Feb. 2015, doi: 10.1364/oe.23.005590.
    8. M. Hasler, J. Stahl, T. Haist, und W. Osten, „Object field expansion in spatial light modulator-based phase contrast microscopy“, Optical Engineering, 2015, [Online]. Verfügbar unter: https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-54/issue-4/043107/Object-field-expansion-in-spatial-light-modulator-based-phase-contrast/10.1117/1.OE.54.4.043107.short
    9. S. Peterhänsel, M. L. Gödecke, V. F. Paz, K. Frenner, und W. Osten, „Detection of overlay error in double patterning gratings using phase-structured illumination“, Opt. Express, Bd. 23, Nr. 19, Art. Nr. 19, Sep. 2015, doi: 10.1364/OE.23.024246.
    10. J. Zheng, G. Pedrini, P. Gao, B. Yao, und W. Osten, „Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination“, Journal of Optics, Bd. 17, Nr. 8, Art. Nr. 8, Juli 2015, doi: 10.1088/2040-8978/17/8/085301.
  11. 2014

    1. A. Anand u. a., „Single beam Fourier transform digital holographic quantitative phase microscopy“, Applied Physics Letters, Bd. 104, Nr. 10, Art. Nr. 10, März 2014, doi: 10.1063/1.4868533.
    2. G. Baer, J. Schindler, C. Pruss, J. Siepmann, und W. Osten, „Fast and Flexible Non-Null Testing of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer“, International Journal of Optomechatronics, Bd. 8, Nr. 4, Art. Nr. 4, Okt. 2014, doi: 10.1080/15599612.2014.942925.
    3. G. Baer, J. Schindler, C. Pruss, J. Siepmann, und W. Osten, „Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces“, Optics Express, Bd. 22, Nr. 25, Art. Nr. 25, Dez. 2014, doi: 10.1364/oe.22.031200.
    4. A. Berrier, B. Gompf, L. Fu, T. Weiss, und H. Schweizer, „Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy“, Phys. Rev. B, Bd. 89, Nr. 19, Art. Nr. 19, Mai 2014, doi: 10.1103/PhysRevB.89.195434.
    5. A. Faridian, G. Pedrini, und W. Osten, „Opposed-view dark-field digital holographic microscopy“, Biomedical Optics Express, Bd. 5, Nr. 3, Art. Nr. 3, Feb. 2014, doi: 10.1364/boe.5.000728.
    6. L. Fu, K. Frenner, und W. Osten, „Rigorous speckle simulation using surface integral equations and higher order boundary element method“, Optics Letters, Bd. 39, Nr. 14, Art. Nr. 14, Juli 2014, doi: 10.1364/ol.39.004104.
    7. P. Gao, G. Pedrini, C. Zuo, und W. Osten, „Phase retrieval using spatially modulated illumination“, Optics Letters, Bd. 39, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/ol.39.003615.
    8. T. Haist, S. Dong, T. Arnold, M. Gronle, und W. Osten, „Multi-image position detection“, Optics Express, Bd. 22, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/oe.22.014450.
    9. T. Haist, C. Lingel, R. Adler, und W. Osten, „Parallelized genetic optimization of spatial light modulator addressing for diffractive applications“, Applied Optics, Bd. 53, Nr. 7, Art. Nr. 7, Feb. 2014, doi: 10.1364/ao.53.001413.
    10. M. Hasler, T. Haist, und W. Osten, „Programmable microscopy“, Fringe 2013, 2014, [Online]. Verfügbar unter: https://link.springer.com/content/pdf/10.1007/978-3-642-36359-7_66.pdf
    11. M. Jamali, I. Gerhardt, M. Rezai, K. Frenner, H. Fedder, und J. Wrachtrup, „Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling“, Review of Scientific Instruments, Bd. 85, Nr. 12, Art. Nr. 12, Dez. 2014, doi: 10.1063/1.4902818.
    12. V. Mart\’ınez-Garc\’ıa, M. Wenzelburger, A. Killinger, G. Pedrini, R. Gadow, und W. Osten, „Residual Stress Measurement with Laser-Optical and Mechanical Methods“, in Residual Stresses IX, in Residual Stresses IX, vol. 996. Trans Tech Publications Ltd, Okt. 2014, S. 256--261. doi: 10.4028/www.scientific.net/AMR.996.256.
    13. D. N. Naik, G. Pedrini, M. Takeda, und W. Osten, „Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer“, Optics Letters, Bd. 39, Nr. 7, Art. Nr. 7, März 2014, doi: 10.1364/ol.39.001857.
    14. W. Osten u. a., „Recent advances in digital holography Invited“, Applied Optics, Bd. 53, Nr. 27, Art. Nr. 27, Juli 2014, doi: 10.1364/ao.53.000g44.
    15. S. Peterhänsel u. a., „Solving the inverse grating problem with the naked eye“, Optics Letters, Bd. 39, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/ol.39.003547.
    16. S. Peterhänsel, C. Pruss, und W. Osten, „Limits of diffractometric reconstruction of line gratings when using scalar diffraction theory“, Optics Letters, Bd. 39, Nr. 13, Art. Nr. 13, Juni 2014, doi: 10.1364/ol.39.003764.
    17. A. K. Singh, A. Faridian, P. Gao, G. Pedrini, und W. Osten, „Quantitative phase imaging using a deep UV LED source“, Optics Letters, Bd. 39, Nr. 12, Art. Nr. 12, Juni 2014, doi: 10.1364/ol.39.003468.
    18. A. K. Singh, D. N. Naik, G. Pedrini, M. Takeda, und W. Osten, „Looking through a diffuser and around an opaque surface: A holographic approach“, Optics Express, Bd. 22, Nr. 7, Art. Nr. 7, März 2014, doi: 10.1364/oe.22.007694.
    19. J. Stumpe u. a., „Active and Passive LC Based Polarization Elements“, Molecular Crystals and Liquid Crystals, Bd. 594, Nr. 1, Art. Nr. 1, Mai 2014, doi: 10.1080/15421406.2014.917503.
  12. 2013

    1. T. Haist u. a., „Multipoint vibrometry with dynamic and static holograms“, Review of Scientific Instruments, Bd. 84, Nr. 12, Art. Nr. 12, Dez. 2013, doi: 10.1063/1.4845596.
    2. C. Lingel, T. Haist, und W. Osten, „Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect“, Applied optics, 2013, [Online]. Verfügbar unter: https://www.osapublishing.org/abstract.cfm?uri=ao-52-28-6877
Zum Seitenanfang