3D-printed Microoptics and Simulation

The group focuses on classical optical design of imaging and illumination systems, as well as ray- and wave-optical based system simulations. In addition, the 3D-printed Microoptics and Simulation (3MS) group is intensively engaged in the additive manufacturing of micro-optics.

The goal of the research group is the investigation of novel simulation and optimization tools, as well as the design and development of innovative complex optical systems for industrial and medical applications.

Design and Manufacturing of 3D-printed Microoptics

Novel concepts and possibilities for optical design are made possible by the constant advancement of 3D printing technology.

Micro 3D printing of optical systems by means of two-photon lithography enables the implementation of concepts that were previously difficult or impossible to realize. Due to the almost unlimited degrees of geometric freedom, the technology places special demands on optical design and requires sophisticated approaches to optimization and simulation, also due to the high degree of miniaturization. In 2020, the spin-off/startup PrintOptix led by former employees Dr. Simon Thiele and Nils Fahrbach emerged from this research field.

Open Source Approaches to Optical Design and Prototyping

One of the group's visions is to make the field of photonics accessible to a broad public through suitable hardware and software. Interested parties will be given the opportunity to design and build simple to complex optical systems independently and at low cost. The basis for this is compatibility with the modular system of the project partner fischertechnik as well as with the common micro database system.

3D-printed color plate with different thicknesses.

Publications

  1. 2023

    1. A. Gröger et al., “World’s smallest single-shot two-wavelength holographic endoscope for 3D surface measurement,” in Endoscopic Microscopy XVIII, G. J. T. M.D., T. D. Wang, and M. J. Suter, Eds., in Endoscopic Microscopy XVIII, vol. PC12356. SPIE, 2023, p. PC123560P. doi: 10.1117/12.2662817.
    2. F. Fischer, K. Frenner, M. Granai, F. Fend, and A. Herkommer, “Data-driven development of sparse multi-spectral sensors for urological tissue differentiation,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023030.
    3. J. Li et al., “3D micro-printing of miniaturized fiber-optic probes capable of multi-modal imaging and beam tailoring,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, J. A. Izatt and J. G. Fujimoto, Eds., in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, vol. PC12367. SPIE, 2023, p. PC1236703. doi: 10.1117/12.2652181.
    4. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D printing of colored micro-optics,” Optical Materials Express, vol. 13, no. 5, Art. no. 5, Apr. 2023, doi: 10.1364/ome.489681.
    5. A. Gröger, G. Pedrini, F. Fischer, D. Claus, I. Aleksenko, and S. Reichelt, “Two-wavelength digital holography through fog,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023024.
  2. 2022

    1. A. Toulouse et al., “Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design,” Opt. Express, vol. 30, no. 2, Art. no. 2, Jan. 2022, doi: 10.1364/OE.439963.
    2. A. Toulouse et al., “High resolution femtosecond direct laser writing with wrapped lens,” Opt. Mater. Express, vol. 12, no. 9, Art. no. 9, Sep. 2022, doi: 10.1364/OME.468534.
    3. J. Drozella et al., “Micro-3D-printed multi-aperture freeform ultra-wide-angle systems: production, characterization, and correction,” in Laser-based Micro- and Nanoprocessing XVI, A. Watanabe and R. Kling, Eds., in Laser-based Micro- and Nanoprocessing XVI, vol. 11989. SPIE, 2022, p. 119890V. doi: 10.1117/12.2609844.
    4. M. D. Schmid, A. Toulouse, S. Thiele, S. Mangold, A. M. Herkommer, and H. Giessen, “3D Direct Laser Writing of Highly Absorptive Photoresist for Miniature Optical Apertures,” Advanced Functional Materials, p. 2211159, Dec. 2022, doi: 10.1002/adfm.202211159.
    5. L. Bremer et al., “Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots,” Opt. Express, vol. 30, no. 10, Art. no. 10, May 2022, doi: 10.1364/OE.456777.
    6. L. Becker et al., “Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids,” International Journal of Molecular Sciences, vol. 23, no. 13, Art. no. 13, 2022, doi: 10.3390/ijms23136956.
    7. F. Fischer, A. Birk, P. Somers, K. Frenner, C. Tarín, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” Machine Learning and Knowledge Extraction, vol. 4, no. 4, Art. no. 4, 2022, doi: 10.3390/make4040049.
    8. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. M. Herkommer, “Complex 3D printed microoptical systems: from a pinhole camera to a spectrometer,” in 3D Printed Optics and Additive Photonic Manufacturing III, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., in 3D Printed Optics and Additive Photonic Manufacturing III, vol. PC12135. SPIE, 2022, p. PC1213504. doi: 10.1117/12.2624165.
    9. M. Wende, J. Drozella, A. Toulouse, and A. M. Herkommer, “Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method,” Optics Express, vol. 30, no. 22, Art. no. 22, Oct. 2022, doi: 10.1364/oe.469178.
    10. F. Fischer, K. Frenner, and A. M. Herkommer, “Sparse Mid-Infrared Spectra Enable Real-time and In-vivo Applications in Tissue Discrimination,” EPJ Web of Conferences, vol. 266, p. 02004, 2022, doi: 10.1051/epjconf/202226602004.
    11. P. Ruchka et al., “Microscopic 3D printed optical tweezers for atomic quantum technology,” Quantum Science and Technology, vol. 7, no. 4, Art. no. 4, Jul. 2022, doi: 10.1088/2058-9565/ac796c.
    12. J. Schwab et al., “Coupling light emission of single-photon sources into single-mode fibers: mode matching, coupling efficiencies, and thermo-optical effects,” Opt. Express, vol. 30, no. 18, Art. no. 18, Aug. 2022, doi: 10.1364/OE.465101.
    13. F. Fischer, A. Birk, K. Frenner, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” May 2022, doi: 10.36227/techrxiv.19803520.v1.
  3. 2021

    1. F. Rothermel, S. Thiele, C. Jung, H. Giessen, and A. Herkommer, “Towards magnetically actuated 3D-printed micro-optical elements,” in Optomechanics and Optical Alignment, K. B. Doyle, J. D. Ellis, J. M. Sasián, and R. N. Youngworth, Eds., in Optomechanics and Optical Alignment, vol. 11816. SPIE, 2021, p. 118160I. doi: 10.1117/12.2594213.
    2. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” in Conference on Lasers and Electro-Optics, in Conference on Lasers and Electro-Optics. Optica Publishing Group, 2021, p. ATh1R.1. doi: 10.1364/CLEO_AT.2021.ATh1R.1.
    3. A. Asadollahbaik et al., “Structured light to miniaturize optical micromanipulation,” in Optical Trapping and Optical Micromanipulation XVIII, K. Dholakia and G. C. Spalding, Eds., in Optical Trapping and Optical Micromanipulation XVIII, vol. 11798. SPIE, 2021, p. 117981G. doi: 10.1117/12.2596522.
    4. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. Herkommer, “3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint,” Light: Advanced Manufacturing, vol. 2, no. 1, Art. no. 1, 2021, doi: 10.37188/lam.2021.002.
  4. 2020

    1. A. Asadollahbaik et al., “Efficient mirco- and nanoparticle trapping by improved optical fiber tweezers using 3D printed diffractive optical elements,” in Optical Trapping and Optical Micromanipulation XVII, K. Dholakia and G. C. Spalding, Eds., in Optical Trapping and Optical Micromanipulation XVII, vol. 11463. SPIE, 2020, p. 114631E. doi: 10.1117/12.2567647.
    2. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” Opt. Mater. Express, vol. 10, no. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OME.401724.
    3. A. Asadollahbaik et al., “Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses,” ACS Photonics, vol. 7, no. 1, Art. no. 1, Jan. 2020, doi: 10.1021/acsphotonics.9b01024.
    4. A. Asadollahbaik et al., “Improved optical fiber tweezers using 3D printed Fresnel lenses (Conference Presentation),” in Nanophotonics VIII, D. L. Andrews, A. J. Bain, M. Kauranen, and J.-M. Nunzi, Eds., in Nanophotonics VIII, vol. 11345. SPIE, 2020, p. 1134506. doi: 10.1117/12.2559875.
    5. S. Schmidt et al., “Tailored micro-optical freeform holograms for integrated complex beam shaping,” Optica, vol. 7, no. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OPTICA.395177.
    6. F. Rothermel, S. Thiele, C. Jung, and A. Herkommer, “Ansatz zur Aktuierung 3D-gedruckter Mikrooptiken mittels magnetischer Flüssigkeiten,” DGaO Proceedings, 2020.
    7. S. Thiele, A. Toulouse, S. Ristok, H. Giessen, and A. Herkommer, “Translating optical design freedom into 3D printed complex micro-optics (Conference Presentation),” in 3D Printed Optics and Additive Photonic Manufacturing II, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., in 3D Printed Optics and Additive Photonic Manufacturing II, vol. 11349. SPIE, 2020, p. 1134904. doi: 10.1117/12.2559198.
  5. 2019

    1. A. Toulouse, S. Thiele, and A. Herkommer, “Virtual reality headset using a gaze-synchronized display system,” in Optical Design Challenge 2019, B. C. Kress, Ed., in Optical Design Challenge 2019, vol. 11040. SPIE, 2019, p. 1104009. doi: 10.1117/12.2523920.
    2. J. Drozella, A. Toulouse, S. Thiele, and A. M. Herkommer, “Fast and comfortable GPU-accelerated wave-optical simulation for imaging properties and design of highly aspheric 3D-printed freeform microlens systems,” in Novel Optical Systems, Methods, and Applications XXII, C. F. Hahlweg and J. R. Mulley, Eds., in Novel Optical Systems, Methods, and Applications XXII, vol. 11105. SPIE, 2019, p. 1110506. doi: 10.1117/12.2528843.
  6. 2018

    1. A. Toulouse, S. Thiele, H. Giessen, and A. Herkommer, “Alignment-free integration of apertures and non-transparent hulls into 3D-printed micro-optics,” Opt. Lett., vol. 43, no. 5283, Art. no. 5283, 2018, doi: doi.org/10.1364/OL.43.005283.
    2. F. Rothermel, C. Pruß, A. Herkommer, and W. Osten, “In-Prozess Messtechnik für 3D-gedruckte Optiken,” DGaO Proceedings, 2018.
    3. S. Thiele, H. Giessen, T. Gissibl, K. Arzenbacher, and A. Herkommer, “Method of fabricating a multi-aperture system for foveated imaging and corresponding multi-aperture system,” Apr. 26, 2018 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=WO002018072806A1
    4. J. Drozella, K. Frenner, and W. Osten, “GPU-accelerated simulation of the superresolution capabilities of dielectric microspheres using the Differential Method,” in Optical Micro- and Nanometrology VII, C. Gorecki, A. K. Asundi, and W. Osten, Eds., in Optical Micro- and Nanometrology VII, vol. 10678. SPIE, 2018, p. 106780N. doi: 10.1117/12.2306435.
    5. A. Hartung, S. Thiele, J. Drozella, H. Giessen, and A. Herkommer, “Schwärzen von 3D-gedruckten Mikrooptiken mittels Inkjet-Verfahren,” DGaO Proceedings, 2018.
  7. 2017

    1. K. Körner, S. Thiele, and A. Herkommer, “Anordnung und Verfahren zur Raman-Spektroskopie, insbesondere auch zur Tumorgewebe- und Aorta-Diagnostik,” Sep. 14, 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102016003334A1&famSearchFromHitlist=1
    2. K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, and H. Giessen, “Single mode fiber based delivery of OAM light by 3D direct laser writing,” Opt. Express, vol. 25, no. 17, Art. no. 17, Aug. 2017, doi: 10.1364/OE.25.019672.
    3. S. Fischbach et al., “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS PHOTONICS, vol. 4, no. 6, Art. no. 6, Jun. 2017, doi: 10.1021/acsphotonics.7b00253.
    4. B. Chen and A. Herkommer, “Alternate optical designs for head-mounted displays with a wide field of view,” Applied Optics, vol. 56, no. 4, Art. no. 4, Feb. 2017, doi: 10.1364/AO.56.000901.
    5. S. Schmidt, S. Thiele, A. Herkommer, A. Tuennermann, and H. Gross, “Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses,” OPTICS LETTERS, vol. 42, no. 8, Art. no. 8, Apr. 2017, doi: 10.1364/OL.42.001612.
    6. D. Rausch, M. Rommel, A. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” OPTICAL ENGINEERING, vol. 56, no. 6, Art. no. 6, Jun. 2017, doi: 10.1117/1.OE.56.6.065103.
    7. S. Thiele, H. Giessen, T. Gissibl, and A. Herkommer, “Verfahren und Vorrichtung zur Herstellung eines optischen Elements mit zumindest einem funktionalen Bereich, sowie Verwendung der Vorrichtung,” May 03, 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=EP000003162549A1&famSearchFromHitlist=1
    8. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Science Advances, vol. 3, p. e1602655, Feb. 2017, doi: 10.1126/sciadv.1602655.
    9. F. Grimm and A. Herkommer, “Zweistufiges Konzentratorsystem für einen Paraboloidkollektor,” Feb. 02, 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102014008794B4&famSearchFromHitlist=1
    10. F. Grimm and A. Herkommer, “Parabolrinnenkollektor mit einem Sekundärkonzentrator und einem Empfängerelement,” Feb. 02, 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102014006985B4&famSearchFromHitlist=1
  8. 2016

    1. H. Gießen, T. Gissibl, S. Thiele, and A. Herkommer, “Das kleinste Endoskop der Welt per 3D-Druck,” vol. 47, no. 5, Art. no. 5, 2016, doi: 10.1002/piuz.201690083.
    2. S. Thiele et al., “Design, simulation and 3D printing of complex micro-optics for imaging,” 2016 International Conference on Optical MEMS and Nanophotonics (OMN), pp. 1–2, Jul. 2016, doi: 10.1109/OMN.2016.7565887.
    3. B. Chen and A. Herkommer, “Generalized Aldis theorem for calculating aberration contributions in freeform systems,” OPTICS EXPRESS, vol. 24, no. 23, Art. no. 23, Nov. 2016, doi: 10.1364/OE.24.026999.
    4. T. Talpur and A. Herkommer, “Review of freeform TIR collimator design methods,” Advanced Optical Technologies, vol. 5, Jan. 2016, doi: 10.1515/aot-2016-0003.
    5. B. Chen and A. Herkommer, “High order surface aberration contributions from phase space analysis of    differential rays,” OPTICS EXPRESS, vol. 24, no. 6, Art. no. 6, Mar. 2016, doi: 10.1364/OE.24.005934.
    6. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing    on single-mode fibres,” NATURE COMMUNICATIONS, vol. 7, Jun. 2016, doi: 10.1038/ncomms11763.
    7. T. Gissibl, S. Thiele, A. Herkommer, and H. Gießen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” NATURE PHOTONICS, vol. 10, no. 8, Art. no. 8, Aug. 2016, doi: 10.1038/NPHOTON.2016.121.
    8. W. Fuhl et al., “Non-intrusive practitioner pupil detection for unmodified microscope oculars,” COMPUTERS IN BIOLOGY AND MEDICINE, vol. 79, pp. 36–44, Dec. 2016, doi: 10.1016/j.compbiomed.2016.10.005.
    9. M. Blattmann et al., “Bimodal endoscopic probe combining white-light microscopy and optical    coherence tomography,” APPLIED OPTICS, vol. 55, no. 15, Art. no. 15, May 2016, doi: 10.1364/AO.55.004261.
    10. S. Thiele, T. Gissibl, H. Gießen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” OPTICS LETTERS, vol. 41, no. 13, Art. no. 13, Jul. 2016, doi: 10.1364/OL.41.003029.
  9. 2015

    1. H. Suhr and A. M. Herkommer, “In situ microscopy using adjustment-free optics,” JOURNAL OF BIOMEDICAL OPTICS, vol. 20, no. 11, Art. no. 11, Nov. 2015, doi: 10.1117/1.JBO.20.11.116007.
  10. 2014

    1. A. M. Herkommer, “Phase space optics: an alternate approach to freeform optical systems,” 2014.
    2. A. M. Herkommer, “Advances in the design of freeform systems for imaging and illumination applications,” Journal of Optics, vol. 43, no. 4, Art. no. 4, Dec. 2014, doi: 10.1007/s12596-014-0224-7.
    3. S. Thiele, A. Seifert, and A. Herkommer, “Wave-optical design of a combined refractive-diffractive varifocal lens,” Optics Express, vol. 22, no. 11, Art. no. 11, 2014.

Group leader

This image shows Andrea Toulouse

Andrea Toulouse

Dr.

Group leader 3D-printed Microoptics and Simulation

To the top of the page