This image shows Valese Aslani

Valese Aslani

Dr.

Research Assistant
Institute of Applied Optics
3D-printed Microoptics and Simulation

Contact

+49 711 685 60955
+49 711 685 66586

Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Room: 1.232

  1. Juli 2024

    1. V. Aslani, “Endoskopisches Messsystem zur elastografischen Gewebedifferenzierung basierend auf aktiver Triangulation und 3D-gedruckter Mikrooptik : = Endoscopic measurement system for elastographic tissue differentiation based on active triangulation and 3D-printed micro-optics,” vol. Nr. 124. in Berichte aus dem Institut für Technische Optik, vol. Nr. 124. 2024. [Online]. Available: https://d-nb.info/1338731173/04
  2. 2024

    1. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D-Druck von farbigen Mikrooptiken,” D. Proceedings, Ed., 2024.
    2. A. Toulouse, S. Thiele, V. Aslani, and A. Herkommer, “Verfahren zum Schutz von Objektiven für neue Fotolacke in der hochauflösenden Zweiphotonenlithografie,” in DGaO Proceedings 2024, DGaO, Ed., 2024. [Online]. Available: https://www.dgao-proceedings.de/abstract/abstract_only.php?id=3069
    3. Ö. Atmaca et al., “Elastographic Measurements Using Fourier Transform Profilometry for Tissue Differentiation in Oncology,” in DGaO Proceedings 2024, Aug. 2024, p. P20. [Online]. Available: https://www.dgao-proceedings.de/download/125/125_p20.pdf
    4. V. Aslani, T. Haist, S. Thiele, and A. Herkommer, “Endoscopic measurement system for elastographic tissue differentiation based on active triangulation and 3D-printed micro-optics,” SPIE, 2024, p. 128170E. doi: 10.1117/12.3007293.
  3. 2023

    1. V. Aslani, T. Haist, S. Thiele, and A. Herkommer, “Sensorsystem zur minimalinvasiven intraoperativen Gewebedifferenzierung in der Onkologie mittels endoskopischer Streifenprojektion,” in DGaO Proceedings 2023, 2023. [Online]. Available: https://www.dgao-proceedings.de/download/124/124_a28.pdf
    2. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D printing of colored micro-optics,” Optical Materials Express, vol. 13, Art. no. 5, Apr. 2023, doi: 10.1364/ome.489681.
    3. P. Somers et al., “An Enhanced Synthetic Cystoscopic Environment for Use in Monocular Depth Estimation,” in 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Jul. 2023, pp. 1–4. doi: 10.1109/EMBC40787.2023.10340303.
    4. J. Schüle et al., “In-plane Strain Analysis by Correlating Geometry and Visual Data Through a Gradient-Based Surface Reconstruction,” in 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Jul. 2023, pp. 1–6. doi: 10.1109/EMBC40787.2023.10340777.
  4. 2022

    1. A. Toulouse et al., “Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design,” Opt. Express, vol. 30, Art. no. 2, Jan. 2022, doi: 10.1364/OE.439963.
    2. J. Drozella et al., “Micro-3D-printed multi-aperture freeform ultra-wide-angle systems: production, characterization, and correction,” in Laser-based Micro- and Nanoprocessing XVI, A. Watanabe and R. Kling, Eds., SPIE, 2022, p. 119890V. doi: 10.1117/12.2609844.
    3. V. Aslani, F. Guerra, A. Steinitz, P. Wilhelm, and T. Haist, “Averaging approaches for highly accurate image-based edge localization,” Optics Continuum, vol. 1, Art. no. 4, Apr. 2022, doi: 10.1364/optcon.453537.
    4. S. Walz, V. Aslani, O. Sawodny, and A. Stenzl, “Robotic radical cystectomy – more precision needed?,” Current Opinion in Urology, vol. Publish Ahead of Print, Dec. 2022, doi: 10.1097/mou.0000000000001072.
  5. 2020

    1. V. Aslani and T. Haist, “Rauschreduktion durch den Einsatz von maschinellem Lernen in der Bildverarbeitung,” DGaO Proceedings, 2020.
To the top of the page