This image shows Alois Herkommer

Alois Herkommer

Prof. Dr.

Professor and Endowed chair "Optical design and Simulation"
Institute for Applied Optics
Optical design and Simulation

Contact

+49 711 685 69871
+49 711 685 66586

Pfaffenwaldring 9
70569 Stuttgart
Germany
Room: 1.239

  1. 2023

    1. F. Fischer, K. Frenner, M. Granai, F. Fend, and A. Herkommer, “Data-driven development of sparse multi-spectral sensors for urological tissue differentiation,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 1, Art. no. 1, 2023, doi: 10.1051/jeos/2023030.
    2. J. Li et al., “3D micro-printing of miniaturized fiber-optic probes capable of multi-modal imaging and beam tailoring,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, J. A. Izatt and J. G. Fujimoto, Eds., in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, vol. PC12367. SPIE, 2023, p. PC1236703. doi: 10.1117/12.2652181.
    3. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D printing of colored micro-optics,” Optical Materials Express, vol. 13, no. 5, Art. no. 5, Apr. 2023, doi: 10.1364/ome.489681.
    4. M. Wende, J. Drozella, and A. M. Herkommer, “Fast bidirectional vector wave propagation method showcased on targeted noise reduction in imaging fiber bundles using 3D-printed micro optics,” Optics Express, vol. 31, no. 18, Art. no. 18, Aug. 2023, doi: 10.1364/oe.497244.
    5. S. Amann, T. Haist, A. Gatto, M. Kamm, and A. Herkommer, “Design and realization of a miniaturized high resolution computed tomography imaging spectrometer,” Journal of the European Optical Society-Rapid Publications, vol. 19, no. 2, Art. no. 2, 2023, doi: 10.1051/jeos/2023027.
    6. S. Amann, T. Haist, A. Gatto, M. Kamm, and A. Herkommer, “Intermediate image free computed tomography imaging spectrometer,” in Photonic Instrumentation Engineering X, L. E. Busse and Y. Soskind, Eds., in Photonic Instrumentation Engineering X, vol. 12428. SPIE, 2023, p. 124280G. doi: 10.1117/12.2650096.
    7. S. Wagner et al., “Injection Molding of Encapsulated Diffractive Optical Elements,” Micromachines, vol. 14, no. 6, Art. no. 6, 2023, doi: 10.3390/mi14061223.
  2. 2022

    1. A. Toulouse et al., “Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design,” Opt. Express, vol. 30, no. 2, Art. no. 2, Jan. 2022, doi: 10.1364/OE.439963.
    2. A. Gronle, C. Pruss, and A. Herkommer, “Misalignment of spheres, aspheres and freeforms in optical measurement systems,” Optics Express, vol. 30, no. 2, Art. no. 2, Jan. 2022, doi: 10.1364/oe.443420.
    3. A. Toulouse et al., “High resolution femtosecond direct laser writing with wrapped lens,” Opt. Mater. Express, vol. 12, no. 9, Art. no. 9, Sep. 2022, doi: 10.1364/OME.468534.
    4. J. Drozella et al., “Micro-3D-printed multi-aperture freeform ultra-wide-angle systems: production, characterization, and correction,” in Laser-based Micro- and Nanoprocessing XVI, A. Watanabe and R. Kling, Eds., in Laser-based Micro- and Nanoprocessing XVI, vol. 11989. SPIE, 2022, p. 119890V. doi: 10.1117/12.2609844.
    5. M. D. Schmid, A. Toulouse, S. Thiele, S. Mangold, A. M. Herkommer, and H. Giessen, “3D Direct Laser Writing of Highly Absorptive Photoresist for Miniature Optical Apertures,” Advanced Functional Materials, p. 2211159, Dec. 2022, doi: 10.1002/adfm.202211159.
    6. L. Bremer et al., “Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots,” Opt. Express, vol. 30, no. 10, Art. no. 10, May 2022, doi: 10.1364/OE.456777.
    7. L. Becker et al., “Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids,” International Journal of Molecular Sciences, vol. 23, no. 13, Art. no. 13, 2022, doi: 10.3390/ijms23136956.
    8. F. Fischer, A. Birk, P. Somers, K. Frenner, C. Tarín, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” Machine Learning and Knowledge Extraction, vol. 4, no. 4, Art. no. 4, 2022, doi: 10.3390/make4040049.
    9. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. M. Herkommer, “Complex 3D printed microoptical systems: from a pinhole camera to a spectrometer,” in 3D Printed Optics and Additive Photonic Manufacturing III, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., in 3D Printed Optics and Additive Photonic Manufacturing III, vol. PC12135. SPIE, 2022, p. PC1213504. doi: 10.1117/12.2624165.
    10. M. Wende, J. Drozella, A. Toulouse, and A. M. Herkommer, “Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method,” Optics Express, vol. 30, no. 22, Art. no. 22, Oct. 2022, doi: 10.1364/oe.469178.
    11. S. Amann, T. Haist, A. Gatto, M. Kamm, and A. Herkommer, “Design and realization of a miniaturized high resolution computed tomography imaging spectrometer,” EPJ Web of Conferences, vol. 266, p. 02001, 2022, doi: 10.1051/epjconf/202226602001.
    12. K. Treptow, C. Schober, C. Pruss, A. Herkommer, and S. Reichelt, “Single-shot Interferometry apart from zero position measurement,” DGaO Proceedings, 2022.
    13. F. Fischer, K. Frenner, and A. M. Herkommer, “Sparse Mid-Infrared Spectra Enable Real-time and In-vivo Applications in Tissue Discrimination,” EPJ Web of Conferences, vol. 266, p. 02004, 2022, doi: 10.1051/epjconf/202226602004.
    14. J. Schwab et al., “Coupling light emission of single-photon sources into single-mode fibers: mode matching, coupling efficiencies, and thermo-optical effects,” Opt. Express, vol. 30, no. 18, Art. no. 18, Aug. 2022, doi: 10.1364/OE.465101.
    15. F. Fischer, A. Birk, K. Frenner, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” May 2022, doi: 10.36227/techrxiv.19803520.v1.
    16. C. Schober, C. Pruss, and A. Herkommer, “Ereignisbasierte Weißlichtinterferometrie (eCSI),” tm - Technisches Messen, vol. 89, no. 6, Art. no. 6, 2022, doi: doi:10.1515/teme-2021-0130.
  3. 2021

    1. F. Rothermel, S. Thiele, C. Jung, H. Giessen, and A. Herkommer, “Towards magnetically actuated 3D-printed micro-optical elements,” in Optomechanics and Optical Alignment, K. B. Doyle, J. D. Ellis, J. M. Sasián, and R. N. Youngworth, Eds., in Optomechanics and Optical Alignment, vol. 11816. SPIE, 2021, p. 118160I. doi: 10.1117/12.2594213.
    2. C. Schober, C. Pruss, and A. Herkommer, “Integriertes Messkonzept zur Registrierung von Weißlichtinterferometriesignalen für Nanometrologie in großen Messvolumina,” DGaO Proceedings, 2021.
    3. N. Harland et al., “Organoide zur Weiterentwicklung der intraoperativen Diagnostik,” Der Urologe, vol. 60, no. 9, Art. no. 9, Sep. 2021, doi: 10.1007/s00120-021-01595-5.
    4. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” in Conference on Lasers and Electro-Optics, in Conference on Lasers and Electro-Optics. Optica Publishing Group, 2021, p. ATh1R.1. doi: 10.1364/CLEO_AT.2021.ATh1R.1.
    5. C. Schober, C. Pruss, A. Faulhaber, and A. Herkommer, “Event based coherence scanning interferometry,” Optics Letters, vol. 46, no. 17, Art. no. 17, Aug. 2021, doi: 10.1364/ol.437489.
    6. A. Asadollahbaik et al., “Structured light to miniaturize optical micromanipulation,” in Optical Trapping and Optical Micromanipulation XVIII, K. Dholakia and G. C. Spalding, Eds., in Optical Trapping and Optical Micromanipulation XVIII, vol. 11798. SPIE, 2021, p. 117981G. doi: 10.1117/12.2596522.
    7. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. Herkommer, “3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint,” Light: Advanced Manufacturing, vol. 2, no. 1, Art. no. 1, 2021, doi: 10.37188/lam.2021.002.
  4. 2020

    1. A. Asadollahbaik et al., “Efficient mirco- and nanoparticle trapping by improved optical fiber tweezers using 3D printed diffractive optical elements,” in Optical Trapping and Optical Micromanipulation XVII, K. Dholakia and G. C. Spalding, Eds., in Optical Trapping and Optical Micromanipulation XVII, vol. 11463. SPIE, 2020, p. 114631E. doi: 10.1117/12.2567647.
    2. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” Opt. Mater. Express, vol. 10, no. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OME.401724.
    3. C. Schober, C. Pruß, and A. Herkommer, “Sensordesign für die NPMM-200 am Beispiel eines Weisslichtsensors,” DGaO Proceedings, 2020.
    4. A. Asadollahbaik et al., “Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses,” ACS Photonics, vol. 7, no. 1, Art. no. 1, Jan. 2020, doi: 10.1021/acsphotonics.9b01024.
    5. A. Asadollahbaik et al., “Improved optical fiber tweezers using 3D printed Fresnel lenses (Conference Presentation),” in Nanophotonics VIII, D. L. Andrews, A. J. Bain, M. Kauranen, and J.-M. Nunzi, Eds., in Nanophotonics VIII, vol. 11345. SPIE, 2020, p. 1134506. doi: 10.1117/12.2559875.
    6. C. Schober, C. Pruss, A. Herkommer, and W. Osten, “The NPMM-200: large area high resolution for freeform surface measurement,” in Seventh European Seminar on Precision Optics Manufacturing, O. W. Fähnle, G. Fütterer, R. Rascher, and A. Haberl, Eds., in Seventh European Seminar on Precision Optics Manufacturing, vol. 11478. SPIE, 2020, p. 1147807. doi: 10.1117/12.2564918.
    7. S. Schmidt et al., “Tailored micro-optical freeform holograms for integrated complex beam shaping,” Optica, vol. 7, no. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OPTICA.395177.
    8. F. Rothermel, S. Thiele, C. Jung, and A. Herkommer, “Ansatz zur Aktuierung 3D-gedruckter Mikrooptiken mittels magnetischer Flüssigkeiten,” DGaO Proceedings, 2020.
    9. S. Thiele, A. Toulouse, S. Ristok, H. Giessen, and A. Herkommer, “Translating optical design freedom into 3D printed complex micro-optics (Conference Presentation),” in 3D Printed Optics and Additive Photonic Manufacturing II, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., in 3D Printed Optics and Additive Photonic Manufacturing II, vol. 11349. SPIE, 2020, p. 1134904. doi: 10.1117/12.2559198.
  5. 2019

    1. C. Reichert, T. Gruhonjic, K. Rishav, T. Haist, and A. Herkommer, “Ganzheitliche Optimierung von optischen Systemen,” DGaO Proceedings, 2019.
    2. S. Thiele, C. Pruss, A. M. Herkommer, and H. Giessen, “3D printed stacked diffractive microlenses,” Optics Express, vol. 27, no. 24, Art. no. 24, Nov. 2019, doi: 10.1364/oe.27.035621.
    3. A. Toulouse, S. Thiele, and A. Herkommer, “Virtual reality headset using a gaze-synchronized display system,” in Optical Design Challenge 2019, B. C. Kress, Ed., in Optical Design Challenge 2019, vol. 11040. SPIE, 2019, p. 1104009. doi: 10.1117/12.2523920.
    4. J. Drozella, A. Toulouse, S. Thiele, and A. M. Herkommer, “Fast and comfortable GPU-accelerated wave-optical simulation for imaging properties and design of highly aspheric 3D-printed freeform microlens systems,” in Novel Optical Systems, Methods, and Applications XXII, C. F. Hahlweg and J. R. Mulley, Eds., in Novel Optical Systems, Methods, and Applications XXII, vol. 11105. SPIE, 2019, p. 1110506. doi: 10.1117/12.2528843.
    5. F. Würtenberger, T. Haist, C. Reichert, A. Faulhaber, T. Boettcher, and A. Herkommer, “Optimum Wavelengths in the Near Infrared for Imaging Photoplethysmography,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 10, Art. no. 10, Oct. 2019, doi: 10.1109/TBME.2019.2897284.
  6. 2018

    1. C. Reichert, F. Würtenberger, V. Hinderer, T. Haist, and A. Herkommer, “Erfassung menschlicher Vitalparameter mithilfe optischer Messtechnik,” DGaO Proceedings, 2018.
    2. F. Rothermel, C. Pruß, A. Herkommer, and W. Osten, “In-Prozess Messtechnik für 3D-gedruckte Optiken,” DGaO Proceedings, 2018.
    3. B. Chen, S. Thiele, M. Xu, and A. M. Herkommer, “Micro objectives with extremely large field of view,” in Optical Design and Engineering VII, L. Mazuray, R. Wartmann, and A. P. Wood, Eds., in Optical Design and Engineering VII, vol. 10690. SPIE, 2018, p. 1069016. doi: 10.1117/12.2313400.
    4. S. Lotz, C. Reichert, T. Haist, and A. Herkommer, “„BaKaRoS“ – ein Baukastensystem für einen niederschwelligen Zugang zur technischen Optik,” DGaO Proceedings, 2018.
    5. A. Baumgartner, S. Amann, C. Müller, A. Herkommer, M. Dressel, and S. Fella, “Infrared reflectance factor of various asphalts,” in Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, C. M. U. Neale and A. Maltese, Eds., in Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, vol. 10783. SPIE, 2018, p. 107831X. doi: 10.1117/12.2325509.
    6. A. Herkommer and S. Thiele, “Design und Herstellung von 3D-gedruckten mikrooptischen Systemen mittels 2-Photonen Polymerisation,” DGaO Proceedings, 2018.
    7. A. Baumgartner, S. Amann, M. Werz, A. Herkommer, M. Dressel, and S. Fella, “Near-infrared optical investigations of snow, ice, and water layers on diffuse reflecting surfaces,” Review of Scientific Instruments, vol. 89, no. 12, Art. no. 12, Dec. 2018, doi: 10.1063/1.5049652.
    8. A. Toulouse, S. Thiele, H. Giessen, and A. M. Herkommer, “Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics,” Opt. Lett., vol. 43, no. 21, Art. no. 21, Nov. 2018, doi: 10.1364/OL.43.005283.
    9. A. Hartung, S. Thiele, J. Drozella, H. Giessen, and A. Herkommer, “Schwärzen von 3D-gedruckten Mikrooptiken mittels Inkjet-Verfahren,” DGaO Proceedings, 2018.
  7. 2017

    1. D. Claus, A. Herkommer, K. Körner, and C. Pruß, “Method and assembly for chromatic confocal spectral interferometry or spectral domain oct,” Dec. 18, 2017 [Online]. Available: https://worldwide.espacenet.com/patent/search?q=pn%3DEP3728989A1
    2. B. Chen and A. M. Herkommer, “Surface Resolved Aberration Contributions in Freeform Optical Systems,” in Optical Design and Fabrication 2017 (Freeform, IODC, OFT), in Optical Design and Fabrication 2017 (Freeform, IODC, OFT). Optica Publishing Group, 2017, p. JTu1C.3. doi: 10.1364/FREEFORM.2017.JTu1C.3.
To the top of the page