This image shows Christof Pruß

Christof Pruß

Dipl.-Phys.

Group leader Interferometry and Diffractive Optics
Institute for Applied Optics

Contact

+49 711 685 66066
+49 711 685 66072

Pfaffenwaldring 9
D - 70569 Stuttgart
Germany
Room: 1.258A

  1. 2023

    1. C. Schober, L. Lausmann, K. Treptow, C. Pruss, and S. Reichelt, “Complex illumination system for fast interferometric measurements,” in EPJ Web of Conferences, B. Kibler, G. Millot, and P. Segonds, Eds., in EPJ Web of Conferences, vol. 287. EDP Sciences, 2023, p. 02002. doi: 10.1051/epjconf/202328702002.
    2. R. Beisswanger, C. Pruss, and S. Reichelt, “Retrace error calibration for interferometric measurements using an unknown optical system,” Opt. Express, vol. 31, no. 17, Art. no. 17, Aug. 2023, doi: 10.1364/OE.496059.
    3. D. Didychenko et al., “Generation of a radially polarized beam in a polycrystalline ceramic Yb:Lu2O3 thin-disk laser,” Applied Physics B, vol. 129, no. 9, Art. no. 9, Aug. 2023, doi: 10.1007/s00340-023-08089-6.
    4. C. Schober, L. Lausmann, K. Treptow, C. Pruss, and S. Reichelt, “Neue Designmöglichkeiten durch Zweiphotonenlithographie für ein RGB-Interferometer-Beleuchtungsmodul,” DGaO Proceedings, 2023.
    5. S. Fischer Calderón et al., Absolute determination of a large mirror surface from spatial gradients using a coordinate measuring machine, vol. 12672. in Proc. SPIE, vol. 12672. SPIE, 2023. doi: http://dx.doi.org/10.1117/12.2675734.
    6. S. Wagner et al., “Injection Molding of Encapsulated Diffractive Optical Elements,” Micromachines, vol. 14, no. 6, Art. no. 6, 2023, doi: 10.3390/mi14061223.
  2. 2022

    1. A. Gronle, C. Pruss, and A. Herkommer, “Misalignment of spheres, aspheres and freeforms in optical measurement systems,” Optics Express, vol. 30, no. 2, Art. no. 2, Jan. 2022, doi: 10.1364/oe.443420.
    2. A. Savchenko et al., “Fabrication of sub-wavelength circular diffraction gratings for high-power laser applications,” DGaO Proceedings, 2022.
    3. R. Beisswanger, M. Weckerle, C. Pruss, and S. Reichelt, “Interferometric radius of curvature measurements: an environmental error treatment,” Optics Express, vol. 30, no. 14, Art. no. 14, Jul. 2022, doi: 10.1364/oe.461972.
    4. M. A. Ahmed et al., “High-power thin-disk lasers emitting beams with axially-symmetric polarizations,” Nanophotonics, vol. 11, no. 4, Art. no. 4, 2022, doi: doi:10.1515/nanoph-2021-0606.
    5. K. Treptow, C. Schober, C. Pruss, A. Herkommer, and S. Reichelt, “Single-shot Interferometry apart from zero position measurement,” DGaO Proceedings, 2022.
    6. C. Schober, R. Beisswanger, A. Gronle, C. Pruss, and W. Osten, “Tilted Wave Fizeau Interferometer for flexible and robust asphere and freeform testing,” Light: Advanced Manufacturing, vol. 3, no. 4, Art. no. 4, 2022, doi: 10.37188/lam.2022.048.
    7. C. Schober, C. Pruss, and A. Herkommer, “Ereignisbasierte Weißlichtinterferometrie (eCSI),” tm - Technisches Messen, vol. 89, no. 6, Art. no. 6, 2022, doi: doi:10.1515/teme-2021-0130.
  3. 2021

    1. C. Schober, C. Pruss, and A. Herkommer, “Integriertes Messkonzept zur Registrierung von Weißlichtinterferometriesignalen für Nanometrologie in großen Messvolumina,” DGaO Proceedings, 2021.
    2. Y. Arezki et al., “Traceable Reference Full Metrology Chain for Innovative Aspheric and Freeform Optical Surfaces Accurate at the Nanometer Level,” Sensors, vol. 21, no. 4, Art. no. 4, 2021, doi: 10.3390/s21041103.
    3. C. Schober, C. Pruss, A. Faulhaber, and A. Herkommer, “Event based coherence scanning interferometry,” Optics Letters, vol. 46, no. 17, Art. no. 17, Aug. 2021, doi: 10.1364/ol.437489.
    4. F. Beirow et al., “Increasing the efficiency of the intra-cavity generation of ultra-short radially polarized pulses in thin-disk resonators with grating waveguide structures,” OSA Continuum, vol. 4, no. 2, Art. no. 2, Jan. 2021, doi: 10.1364/osac.414100.
    5. F. Bienert, C. Pruß, and M. Abdou-Ahmed, “GRATING MIRROR AND RADIATION PROVIDING SYSTEM COMPRISING A GRATING MIRROR,” May 21, 2021 [Online]. Available: https://worldwide.espacenet.com/patent/search?q=pn%3DEP4092458A1
  4. 2020

    1. C. Schober, C. Pruß, and A. Herkommer, “Sensordesign für die NPMM-200 am Beispiel eines Weisslichtsensors,” DGaO Proceedings, 2020.
    2. C. Schober, C. Pruss, A. Herkommer, and W. Osten, “The NPMM-200: large area high resolution for freeform surface measurement,” in Seventh European Seminar on Precision Optics Manufacturing, O. W. Fähnle, G. Fütterer, R. Rascher, and A. Haberl, Eds., in Seventh European Seminar on Precision Optics Manufacturing, vol. 11478. SPIE, 2020, p. 1147807. doi: 10.1117/12.2564918.
    3. R. Su et al., “Lens aberration compensation in interference microscopy,” Optics and Lasers in Engineering, vol. 128, p. 106015, May 2020, doi: 10.1016/j.optlaseng.2020.106015.
    4. C. Pruß and C. Schober, “Einzelbild-Tilted Wave Interferometer,” Nov. 20, 2020 [Online]. Available: https://worldwide.espacenet.com/patent/search?q=pn%3DDE102020130814A1
  5. 2019

    1. M. Roeder et al., “Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding,” Journal of Manufacturing Processes, vol. 47, pp. 402--409, Nov. 2019, doi: 10.1016/j.jmapro.2019.10.012.
    2. A. Harsch, C. Pruss, G. Baer, and W. Osten, “Monte Carlo simulations: a tool to assess complex measurement systems,” in Sixth European Seminar on Precision Optics Manufacturing, R. Rascher and C. Schopf, Eds., in Sixth European Seminar on Precision Optics Manufacturing, vol. 11171. SPIE, 2019, p. 111710C. doi: 10.1117/12.2526799.
    3. R. Hahn et al., “In-situ laser fabrication to reduce eccentricity errors in optical encoders,” in Conference on Lasers and Electro-Optics, in Conference on Lasers and Electro-Optics. Optica Publishing Group, 2019, p. JTu2A.12. doi: 10.1364/CLEO_AT.2019.JTu2A.12.
    4. C. Pruss, K. Frenner, and W. Osten, “NPMM200 – Sub-Nanometer-Positionierung in großen Volumina,” DGaO Proceedings, 2019.
    5. J. Schindler, C. Pruss, and W. Osten, “Simultaneous removal of nonrotationally symmetric errors in tilted wave interferometry,” Optical Engineering, vol. 58, no. 7, Art. no. 7, 2019, doi: 10.1117/1.OE.58.7.074105.
    6. T. Dietrich et al., “Thin-Disk Laser Emitting Beams with 980 W of CW-Output Power and Radial Polarization,” in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Jun. 2019, pp. 1–1. doi: 10.1109/CLEOE-EQEC.2019.8871934.
    7. S. Thiele, C. Pruss, A. M. Herkommer, and H. Giessen, “3D printed stacked diffractive microlenses,” Optics Express, vol. 27, no. 24, Art. no. 24, Nov. 2019, doi: 10.1364/oe.27.035621.
    8. R. Beisswanger, C. Pruss, C. Schober, A. Harsch, and W. Osten, “Tilted wave interferometer in common path configuration: challenges and realization,” in Optical Measurement Systems for Industrial Inspection XI, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XI, vol. 11056. SPIE, 2019, p. 110561G. doi: 10.1117/12.2526175.
    9. E. Manske et al., “Scale spanning subnanometer metrology up to ten decades,” in Optical Measurement Systems for Industrial Inspection XI, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection XI, vol. 11056. SPIE, 2019, p. 110560L. doi: 10.1117/12.2526076.
    10. A. Harsch, A. Parvizi, C. Pruß, and W. Osten, “Eine effiziente Methode zur Beurteilung inverser Messverfahren,” DGaO Proceedings, 2019.
  6. 2018

    1. F. Schaal et al., “Optically addressed modulator for tunable spatial polarization control,” Optics Express, vol. 26, no. 21, Art. no. 21, Oct. 2018, doi: 10.1364/oe.26.028119.
    2. F. Rothermel, C. Pruß, A. Herkommer, and W. Osten, “In-Prozess Messtechnik für 3D-gedruckte Optiken,” DGaO Proceedings, 2018.
    3. C. Pruß and W. Osten, “Asphären- und Freiformflächenmesstechnik: Herausforderungen im Spannungsfeld zwischen Flexibilität und Kalibrierung,” DGaO Proceedings, 2018.
    4. A. Haberl et al., “Model based error separation of power spectral density artefacts in wavefront measurement,” in Interferometry XIX, K. Creath, J. Burke, M. B. N. Morris, and A. D. Davies, Eds., in Interferometry XIX, vol. 10749. SPIE, 2018, p. 107490T. doi: 10.1117/12.2321106.
    5. R. Schachtschneider et al., “Interlaboratory comparison measurements of aspheres,” Measurement Science and Technology, vol. 29, no. 5, Art. no. 5, Apr. 2018, doi: 10.1088/1361-6501/aaae96.
    6. A. Harsch, C. Pruss, A. Haberl, and W. Osten, “Tilted wave interferometry for testing large surfaces,” in Fifth European Seminar on Precision Optics Manufacturing, R. Rascher and C. Schopf, Eds., in Fifth European Seminar on Precision Optics Manufacturing, vol. 10829. SPIE, 2018, p. 1082908. doi: 10.1117/12.2318573.
    7. T. Dietrich et al., “Thin-disk oscillator delivering radially polarized beams with up to 9800.167em0.167emW of CW output power,” Optics Letters, vol. 43, no. 6, Art. no. 6, Mar. 2018, doi: 10.1364/ol.43.001371.
  7. 2017

    1. C. Pruss, G. B. Baer, J. Schindler, and W. Osten, “Measuring aspheres quickly: tilted wave interferometry,” Optical Engineering, vol. 56, no. 11, Art. no. 11, 2017, doi: 10.1117/1.OE.56.11.111713.
    2. D. Claus, A. Herkommer, K. Körner, and C. Pruß, “Method and assembly for chromatic confocal spectral interferometry or spectral domain oct,” Dec. 18, 2017 [Online]. Available: https://worldwide.espacenet.com/patent/search?q=pn%3DEP3728989A1
    3. C. Pruß et al., “Sub-lambda Polarisationsformer für Hochleistungslaser,” DGaO Proceedings, 2017.
    4. M. Eckerle et al., “High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses,” Applied Physics B, vol. 123, no. 5, Art. no. 5, Apr. 2017, doi: 10.1007/s00340-017-6720-0.
    5. C. Pruss et al., “High power polarization shaping utilizing sub-lambda-grating structures,” in EOS Topical meeting on Diffractive Optics, in EOS Topical meeting on Diffractive Optics. EOS, 2017.
    6. A. Bielke, C. Pruß, and W. Osten, “Streulichtreduzierung bei einem variablen Interferometer-Objektiv mit zwei diffraktiven Elementen,” DGaO Proceedings, 2017.
    7. J. Schindler, C. Pruss, and W. Osten, “Increasing the accuracy of tilted-wave-interferometry by elimination of systematic errors,” in Optical Measurement Systems for Industrial Inspection X, P. Lehmann, W. Osten, and A. A. G. Jr., Eds., in Optical Measurement Systems for Industrial Inspection X, vol. 10329. SPIE, 2017, p. 1032904. doi: 10.1117/12.2270395.
    8. T. Dietrich et al., “CW thin-disk laser emitting kW-class beams with radial polarization,” in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Jun. 2017, pp. 1–1. doi: 10.1109/CLEOE-EQEC.2017.8086260.
    9. A. Bielke, C. Pruss, and W. Osten, “Design of a variable diffractive zoom lens for interferometric purposes,” Optical Engineering, vol. 56, no. 1, Art. no. 1, 2017, doi: 10.1117/1.OE.56.1.014104.
  8. 2016

    1. Y. Huang et al., “Absolute test for cylindrical surfaces using the conjugate differential method,” Optical Engineering, vol. 55, no. 11, Art. no. 11, 2016, doi: 10.1117/1.OE.55.11.114104.
    2. M. Eckerle et al., “Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses,” Optics Letters, vol. 41, no. 7, Art. no. 7, Apr. 2016, doi: 10.1364/ol.41.001680.
    3. A. Siller, C. Pruß, D. Hopp, and W. Osten, “Neuer Sensor zur exakten Bestimmung von Drehwinkeln,” MTZ - Motortechnische Zeitschrift, vol. 77, no. 4, Art. no. 4, Apr. 2016, doi: 10.1007/s35146-016-0012-9.
    4. A. Siller, C. Pruß, D. Hopp, and W. Osten, “Novel Sensor for Accurate Measurement of Rotary Angles,” MTZ worldwide, vol. 77, no. 4, Art. no. 4, Apr. 2016, doi: 10.1007/s38313-016-0009-2.
  9. 2015

    1. A. Bielke, G. Baer, C. Pruss, and W. Osten, “Model-based calibration of an interferometric setup with a diffractive zoom-lens,” in 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, Y. Wang, X. Tan, and K. Tatsuno, Eds., in 2015 International Conference on Optical Instruments and Technology: Optical Systems and Modern Optoelectronic Instruments, vol. 9618. SPIE, 2015, p. 961807. doi: 10.1117/12.2191579.
    2. T. Haist et al., “Towards one trillion positions,” in Automated Visual Inspection and Machine Vision, J. Beyerer and F. P. León, Eds., in Automated Visual Inspection and Machine Vision, vol. 9530. SPIE, 2015, p. 953004. doi: 10.1117/12.2184636.
  10. 2014

    1. J. Stumpe et al., “Active and Passive LC Based Polarization Elements,” Molecular Crystals and Liquid Crystals, vol. 594, no. 1, Art. no. 1, May 2014, doi: 10.1080/15421406.2014.917503.
    2. J. Schindler, G. Baer, C. Pruss, and W. Osten, “The tilted-wave-interferometer: freeform surface reconstruction in a non-null setup,” in International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors, J. Czarske, S. Zhang, D. Sampson, W. Wang, and Y. Liao, Eds., in International Symposium on Optoelectronic Technology and Application 2014: Laser and Optical Measurement Technology; and Fiber Optic Sensors, vol. 9297. SPIE, 2014, p. 92971R. doi: 10.1117/12.2073053.
    3. S. Peterhänsel, C. Pruss, and W. Osten, “Limits of diffractometric reconstruction of line gratings when using scalar diffraction theory,” Optics Letters, vol. 39, no. 13, Art. no. 13, Jun. 2014, doi: 10.1364/ol.39.003764.
    4. C. Pruss, G. Baer, J. Schindler, and W. Osten, “Flexibility and rapid measurement: asphere and freeform metrology with Tilted Wave Interferometry,” in Classical Optics 2014, in Classical Optics 2014. Optica Publishing Group, 2014, p. OW2B.1. doi: 10.1364/OFT.2014.OW2B.1.
    5. G. Baer, J. Schindler, C. Pruss, J. Siepmann, and W. Osten, “Fast and Flexible Non-Null Testing of Aspheres and Free-Form Surfaces with the Tilted-Wave-Interferometer,” International Journal of Optomechatronics, vol. 8, no. 4, Art. no. 4, Oct. 2014, doi: 10.1080/15599612.2014.942925.
    6. S. Peterhänsel et al., “Solving the inverse grating problem with the naked eye,” Optics Letters, vol. 39, no. 12, Art. no. 12, Jun. 2014, doi: 10.1364/ol.39.003547.
    7. F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” in Holography, Diffractive Optics, and Applications VI, Y. Sheng, C. Yu, and C. Zhou, Eds., in Holography, Diffractive Optics, and Applications VI, vol. 9271. SPIE, 2014, p. 927105. doi: 10.1117/12.2071106.
    8. A. Bielke, C. Pruss, and W. Osten, “Experimental demonstration of a diffractive zoom-lens for an interferometric setup,” in Classical Optics 2014, in Classical Optics 2014. Optica Publishing Group, 2014, p. OTu4A.3. doi: 10.1364/OFT.2014.OTu4A.3.
    9. G. Baer, J. Schindler, C. Pruss, J. Siepmann, and W. Osten, “Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces,” Optics Express, vol. 22, no. 25, Art. no. 25, Dec. 2014, doi: 10.1364/oe.22.031200.
To the top of the page