Direkt zu




Baden-Württemberg Stiftung





twip optical solutions GmbH



Institut f. Technische Optik
Universität Stuttgart
Pfaffenwaldring 9
70569 Stuttgart

T: +49 (0)711/685-66074
F: +49 (0)711/685-66586


Programmierbare Mikroskopie

Programmable microscopy is a technique where different microscopic imaging and manipulation methods are realized by changing the illumination or the filtering before the images are captured. Different manipulation strategies ranging from trapping over movement to microcutting or photopolymerization are possible. Examples of imaging methods include Zernike phase contrast, dark field imaging, differential interference contrast, aberration correction, depth scanning microscopy, and stereo microscopy. The core element to achieve this flexibility is a high resolution spatial light modulator (SLM), typically a liquid crystal on silicon (LCoS) phase modulator. By means of the light modulator, the imaging can be adapter to the specimen under test. System- and specimen induced aberrations can be corrected. The performance of the imaging methods can be further increased by combining images recorded under different parameters via digital postprocessing.

Within multiple projects we investigated different possible setups and manipulation as well as imaging methods.

Current project: DFG Propupil


  1. Hasler, M.; Haist, T.; Osten, W. „Stereo vision in spatial-light-modulator based microscopy“, Optics Letters 37, 2238-2240 (2012).
  2. Hasler, M.; Haist, T.; Osten, W. „SLM-based microscopy“, Proc. SPIE 8430, 84300V (2012).
  3. Warber, M.; Haist, T.; Hasler, M.; Osten, W. „Vertical differential interference contrast'', Optical Engineering 51(1), (2011).
  4. Warber, M.; Hasler, M.; Haist, T.; Osten, W. „Vertical Differential Interference Contrast using SLMs," Proc. SPIE 8086, 80861E (2011).
  5. Zwick, S., Schaub, C., Haist, T., Osten, W., Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping, Optics Express 18, 19941-19950 (2010)
  6. Warber, M., Haist, T., Zwick, S., Goetz, J., Osten, W., SLM-based phase-contrast filtering for single and multiple image acquisition, Proc. SPIE 7442 (2009)
  7. Schaal,F. Warber, M., Zwick, S., van der Kuip, H., Haist, T., Osten, W., "Marker-free cell discrimination by holographic optical tweezers", J. Europ. Opt. Soc. Rap. Public. 09028 Vol 4 (2009)
  8. Zwick, S., Haist, T., Miyamoto, Y., Hermerschmidt, A., Osten, W., "Holographic twin traps", Journal of Optics A 11 034011, (2009)
  9. Haist, T. , Hafner, J., Osten, W., Scene-based wavefront correction with spatial light modulators, Proc. SPIE 7064, 70640M, (2008)
  10. Hermerschmidt, A., Haist, T., Hafner, J., Osten, W, "Applications of LCoS-based adaptive optical elements in microscopy", IEEE Int. Conf. on Optical MEMs and Nanophotonics 2008, 88-89 (2008)
  11. Zwick, S., Warber, M., Haist, T., Osten, W., "Realisation of a holographic microlaser scalpel using a digital micro mirror device", Proc. SPIE 6616 (2007)
  12. Zwick, S., Lin, H., Warber, M., Haist, T., Osten, W. "Holografisch generierte Doppelfallen für dreidimensionales Trapping", Proc. DGaO 108/108_b1 (2007)
  13. Warber, M., Rominger, V., Zwick, S., Haist, T., Osten, W., "Holographische Pinzette unter Verwendung von kurz brennweitigem Fotoobjektiv mit automatischer Aberrationskorrektur", Proc. DGaO 108/108_b2 (2007)
  14. Reicherter . M., Zwick, S., Haist, T., Kohler, C., Osten, W, „Fast digital hologram generation and adaptive force measurement in LCD based holographic tweezers", Applied Optics 45(5), pp. 888-896 (2006).
  15. Haist, T., Reicherter, M., Burla, A., Seifert, L., Hollis, M., Osten, W., „Fast hologram computation for holographic tweezers", Proc. Fringe 2005, pp. 126-133 (2005).
  16. Reicherter, M.; Haist, T.; Zwick, S.; Burla, A.; Seifert, L., „Fast hologram computation and aberration control for holographic tweezers“, Proc. SPIE 5930, pp. 501-509 (2005).
  17. Reicherter, M., Gorski, W., Haist, T., Osten, W, „Dynamic correction of aberrations in microscopic imaging systems using an artificial point source“, Progress in Biomedical Optics and Imaging, 5 (33), pp. 68-78 (2004).
  18. Reicherter, M., Liesener, J., Haist, T., Tiziani, H.J., „Advantages of holographic optical tweezers“ Proceedings of SPIE , 5143, pp. 76-83 (2003).
  19. Liesener, J., Reicherter, M., Haist, T., Tiziani, H.J., „Multi-functional optical tweezers using computer-generated holograms“, Optics Communications, 185 (1-3), pp. 77-82 (2000).
  20. Reicherter, M., Haist, T., Wagemann, E.U., Tiziani, H.J., „Optical particle trapping with computer-generated holograms written on a liquid-crystal display“, Optics Letters, 24 (9), pp. 608-610 (1999).
  21. Haist, T., Wagemann, E.-U., Tiziani, H.J., „Pulsed-laser ablation using dynamic computer-generated holograms written into a liquid crystal display“, Journal of Optics A: Pure and Applied Optics, 1 (3), pp. 428-430 (1999).