Dieses Bild zeigt Liwei Fu

Liwei Fu

Frau Dr.

Wissenschaftliche Mitarbeiterin
Institut für Technische Optik
Hochauflösende Messtechnik und Simulation

Kontakt

+49 711 685 69833
+49 711 685 66586

Pfaffenwaldring 9
70569 Stuttgart
Deutschland
Raum: 1.218

  1. 2023

    1. H. Li, L. Fu, K. Frenner, und W. Osten, „Design studies of a far-field plasmonic superlens with an enlarged field of view“, Optical Materials, Bd. 138, S. 113688, Apr. 2023, doi: 10.1016/j.optmat.2023.113688.
    2. L. Fu, M. Daiber-Huppert, K. Frenner, und W. Osten, „Simulation of realistic speckle fields by using surface integral equation and multi-level fast multipole method“, Optics and Lasers in Engineering, Bd. 162, S. 107438, März 2023, doi: 10.1016/j.optlaseng.2022.107438.
  2. 2022

    1. L. Fu, M. Daiber-Huppert, K. Frenner, und W. Osten, „Simulation of Realistic Speckle Fields by Using Surface Integral Equation and Fast Multipole Method“, SSRN eLibrary, 2022, doi: 10.2139/ssrn.4160509.
  3. 2020

    1. L. Fu, M. Daiber-Huppert, K. Frenner, und W. Osten, „Rigorous speckle simulator for large area rough surfaces using surface integral equations and multilevel fast multipole method“, DGaO Proceedings, 2020.
  4. 2018

    1. H. Li, L. Fu, K. Frenner, und W. Osten, „Cascaded DBR plasmonic cavity lens for far-field subwavelength imaging at a visible wavelength“, Optics Express, Bd. 26, Nr. 15, Art. Nr. 15, Juli 2018, doi: 10.1364/oe.26.019574.
    2. H. Li, L. Fu, K. Frenner, und W. Osten, „Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength“, Optics Express, Bd. 26, Nr. 8, Art. Nr. 8, Apr. 2018, doi: 10.1364/oe.26.010888.
    3. H. Li, L. Fu, K. Frenner, und W. Osten, „A cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength“, DGaO Proceedings, 2018.
  5. 2017

    1. C. Pruß u. a., „Sub-lambda Polarisationsformer für Hochleistungslaser“, DGaO Proceedings, 2017.
    2. H. Li, L. Fu, K. Frenner, und W. Osten, „Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned“, in Modeling Aspects in Optical Metrology VI, B. Bodermann, K. Frenner, und R. M. Silver, Hrsg., in Modeling Aspects in Optical Metrology VI, vol. 10330. SPIE, 2017, S. 103300Y. doi: 10.1117/12.2275586.
    3. B. Frank u. a., „Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface“, Science Advances, Bd. 3, Nr. 7, Art. Nr. 7, Juli 2017, doi: 10.1126/sciadv.1700721.
    4. T. Dietrich u. a., „CW thin-disk laser emitting kW-class beams with radial polarization“, in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), in 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). Juni 2017, S. 1–1. doi: 10.1109/CLEOE-EQEC.2017.8086260.
  6. 2016

    1. L. Fu, K. Frenner, H. Li, und W. Osten, „A silicon superlens with a simple design working at visible wavelengths“, in Optical Micro- and Nanometrology VI, C. Gorecki, A. K. Asundi, und W. Osten, Hrsg., in Optical Micro- and Nanometrology VI, vol. 9890. SPIE, 2016, S. 98900I. doi: 10.1117/12.2228349.
    2. L. Fu u. a., „Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry“, Opt. Express, Bd. 24, Nr. 24, Art. Nr. 24, Nov. 2016, doi: 10.1364/OE.24.028056.
  7. 2015

    1. L. Fu, P. Schau, K. Frenner, und W. Osten, „A cascaded plasmonic superlens for near field imaging with magnification“, in Modeling Aspects in Optical Metrology V, B. Bodermann, K. Frenner, und R. M. Silver, Hrsg., in Modeling Aspects in Optical Metrology V, vol. 9526. SPIE, 2015, S. 95260Z. doi: 10.1117/12.2185702.
  8. 2014

    1. L. Fu, K. Frenner, und W. Osten, „Rigorous speckle simulation using surface integral equations and higher order boundary element method“, Optics Letters, Bd. 39, Nr. 14, Art. Nr. 14, Juli 2014, doi: 10.1364/ol.39.004104.
    2. B. Frank u. a., „Electrochemical Route to Large-Area Mono-Crystalline Gold Platelets for High-Quality Plasmonic Applications“, in Advanced Photonics, in Advanced Photonics. Optica Publishing Group, 2014, S. JTu3A.60. doi: 10.1364/BGPP.2014.JTu3A.60.
    3. A. Berrier, B. Gompf, L. Fu, T. Weiss, und H. Schweizer, „Optical anisotropies of single-meander plasmonic metasurfaces analyzed by Mueller matrix spectroscopy“, Phys. Rev. B, Bd. 89, Nr. 19, Art. Nr. 19, Mai 2014, doi: 10.1103/PhysRevB.89.195434.
Zum Seitenanfang