3D-gedruckte Mikrooptik und Simulation

Arbeitsschwerpunkte der Gruppe sind das klassische optische Design von Abbildungs- und Beleuchtungssystemen, sowie strahlen- und wellenoptisch basierte Systemsimulationen. Darüber hinaus beschäftigt sich die Gruppe 3D-gedruckte Mikrooptik und Simulation (3MS) intensiv mit der additiven Fertigung von Mikrooptiken.

true" ? copyright : '' }

Forschungsschwerpunkte

Ziel der Arbeitsgruppe ist die Erforschung von neuartigen Simulations- und Optimierungswerkzeugen, sowie das Design und die Entwicklung von innovativen komplexen optischen Systemen für den industriellen und medizinischen Einsatz.

Design und Herstellung von 3D-gedruckten Mikrooptiken

Neuartige Konzepte und Möglichkeiten für das Optikdesign werden durch die stetige Weiterentwicklung der 3D-Druck Technologie ermöglicht.

Der Mikro-3D-Druck von optischen Systemen mittels Zwei-Photonen-Lithografie ermöglicht die Umsetzung von bisher nur schwer oder nicht realisierbaren Konzepten. Durch die beinahe unbegrenzten Geometrie-Freiheitsgrade stellt die Technologie besondere Anforderungen an das Optikdesign und erfordert, auch aufgrund der hohen Miniaturisierung, durchdachte Ansätze zur Optimierung und Simulation. Aus diesem Forschungsfeld entstand 2020 die Ausgründung/Startup PrintOptix geführt durch die ehemaligen Mitarbeiter Dr. Simon Thiele und Nils Fahrbach.

Open Source-Ansätze für Optikdesign und Prototyping

Eine der Visionen der Gruppe ist es, das Gebiet der Photonik durch geeignete Hard- und Software einer breiten Öffentlichkeit zugänglich zu machen. Die Interessenten erhalten die Möglichkeit, einfache bis komplexe optische Systeme selbstständig und kostengünstig zu entwerfen und zu bauen. Grundlage dafür ist eine Kompatibilität mit dem Baukastensystem des Projektpartners fischertechnik sowie mit dem gängigen Mikrobanksystem. 

Publikationen

  1. 2023

    1. V. Aslani, A. Toulouse, M. Schmid, H. Giessen, T. Haist, and A. Herkommer, “3D printing of colored micro-optics,” Optical Materials Express, vol. 13, Art. no. 5, Apr. 2023, doi: 10.1364/ome.489681.
    2. F. Fischer, K. Frenner, M. Granai, F. Fend, and A. Herkommer, “Data-driven development of sparse multi-spectral sensors for urological tissue differentiation,” Journal of the European Optical Society-Rapid Publications, vol. 19, Art. no. 1, 2023, doi: 10.1051/jeos/2023030.
    3. A. Gröger et al., “World’s smallest single-shot two-wavelength holographic endoscope for 3D surface measurement,” in Endoscopic Microscopy XVIII, G. J. T. M.D., T. D. Wang, and M. J. Suter, Eds., SPIE, 2023, p. PC123560P. doi: 10.1117/12.2662817.
    4. A. Gröger, G. Pedrini, F. Fischer, D. Claus, I. Aleksenko, and S. Reichelt, “Two-wavelength digital holography through fog,” Journal of the European Optical Society-Rapid Publications, vol. 19, Art. no. 1, 2023, doi: 10.1051/jeos/2023024.
    5. J. Li et al., “3D micro-printing of miniaturized fiber-optic probes capable of multi-modal imaging and beam tailoring,” in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII, J. A. Izatt and J. G. Fujimoto, Eds., SPIE, 2023, p. PC1236703. doi: 10.1117/12.2652181.
  2. 2022

    1. L. Becker et al., “Data-Driven Identification of Biomarkers for In Situ Monitoring of Drug Treatment in Bladder Cancer Organoids,” International Journal of Molecular Sciences, vol. 23, Art. no. 13, 2022, doi: 10.3390/ijms23136956.
    2. L. Bremer et al., “Numerical optimization of single-mode fiber-coupled single-photon sources based on semiconductor quantum dots,” Opt. Express, vol. 30, Art. no. 10, May 2022, doi: 10.1364/OE.456777.
    3. J. Drozella et al., “Micro-3D-printed multi-aperture freeform ultra-wide-angle systems: production, characterization, and correction,” in Laser-based Micro- and Nanoprocessing XVI, A. Watanabe and R. Kling, Eds., SPIE, 2022, p. 119890V. doi: 10.1117/12.2609844.
    4. F. Fischer, A. Birk, K. Frenner, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” May 2022, doi: 10.36227/techrxiv.19803520.v1.
    5. F. Fischer, A. Birk, P. Somers, K. Frenner, C. Tarín, and A. Herkommer, “FeaSel-Net: A Recursive Feature Selection Callback in Neural Networks,” Machine Learning and Knowledge Extraction, vol. 4, Art. no. 4, 2022, doi: 10.3390/make4040049.
    6. F. Fischer, K. Frenner, and A. M. Herkommer, “Sparse Mid-Infrared Spectra Enable Real-time and In-vivo Applications in Tissue Discrimination,” EPJ Web of Conferences, vol. 266, p. 2004, 2022, doi: 10.1051/epjconf/202226602004.
    7. P. Ruchka et al., “Microscopic 3D printed optical tweezers for atomic quantum technology,” Quantum Science and Technology, vol. 7, Art. no. 4, Jul. 2022, doi: 10.1088/2058-9565/ac796c.
    8. M. D. Schmid, A. Toulouse, S. Thiele, S. Mangold, A. M. Herkommer, and H. Giessen, “3D Direct Laser Writing of Highly Absorptive Photoresist for Miniature Optical Apertures,” Advanced Functional Materials, p. 2211159, Dec. 2022, doi: 10.1002/adfm.202211159.
    9. J. Schwab et al., “Coupling light emission of single-photon sources into single-mode fibers: mode matching, coupling efficiencies, and thermo-optical effects,” Opt. Express, vol. 30, Art. no. 18, Aug. 2022, doi: 10.1364/OE.465101.
    10. A. Toulouse et al., “Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design,” Opt. Express, vol. 30, Art. no. 2, Jan. 2022, doi: 10.1364/OE.439963.
    11. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. M. Herkommer, “Complex 3D printed microoptical systems: from a pinhole camera to a spectrometer,” in 3D Printed Optics and Additive Photonic Manufacturing III, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., SPIE, 2022, p. PC1213504. doi: 10.1117/12.2624165.
    12. A. Toulouse et al., “High resolution femtosecond direct laser writing with wrapped lens,” Opt. Mater. Express, vol. 12, Art. no. 9, Sep. 2022, doi: 10.1364/OME.468534.
    13. M. Wende, J. Drozella, A. Toulouse, and A. M. Herkommer, “Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method,” Optics Express, vol. 30, Art. no. 22, Oct. 2022, doi: 10.1364/oe.469178.
  3. 2021

    1. A. Asadollahbaik et al., “Structured light to miniaturize optical micromanipulation,” in Optical Trapping and Optical Micromanipulation XVIII, K. Dholakia and G. C. Spalding, Eds., SPIE, 2021, p. 117981G. doi: 10.1117/12.2596522.
    2. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” in Conference on Lasers and Electro-Optics, Optica Publishing Group, 2021, p. ATh1R. doi: 10.1364/CLEO_AT.2021.ATh1R.1.
    3. F. Rothermel, S. Thiele, C. Jung, H. Giessen, and A. Herkommer, “Towards magnetically actuated 3D-printed micro-optical elements,” in Optomechanics and Optical Alignment, K. B. Doyle, J. D. Ellis, J. M. Sasián, and R. N. Youngworth, Eds., SPIE, 2021, p. 118160I. doi: 10.1117/12.2594213.
    4. A. Toulouse, J. Drozella, S. Thiele, H. Giessen, and A. Herkommer, “3D-printed miniature spectrometer for the visible range with a 100 × 100 μm<sup>2</sup> footprint,” Light: Advanced Manufacturing, vol. 2, Art. no. 1, 2021, doi: 10.37188/lam.2021.002.
  4. 2020

    1. A. Asadollahbaik et al., “Efficient mirco- and nanoparticle trapping by improved optical fiber tweezers using 3D printed diffractive optical elements,” in Optical Trapping and Optical Micromanipulation XVII, K. Dholakia and G. C. Spalding, Eds., SPIE, 2020, p. 114631E. doi: 10.1117/12.2567647.
    2. A. Asadollahbaik et al., “Improved optical fiber tweezers using 3D printed Fresnel lenses (Conference Presentation),” in Nanophotonics VIII, D. L. Andrews, A. J. Bain, M. Kauranen, and J.-M. Nunzi, Eds., SPIE, 2020, p. 1134506. doi: 10.1117/12.2559875.
    3. A. Asadollahbaik et al., “Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses,” ACS Photonics, vol. 7, Art. no. 1, Jan. 2020, doi: 10.1021/acsphotonics.9b01024.
    4. S. Ristok, S. Thiele, A. Toulouse, A. M. Herkommer, and H. Giessen, “Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components,” Opt. Mater. Express, vol. 10, Art. no. 10, Oct. 2020, doi: 10.1364/OME.401724.
    5. F. Rothermel, S. Thiele, C. Jung, and A. Herkommer, “Ansatz zur Aktuierung 3D-gedruckter Mikrooptiken mittels magnetischer Flüssigkeiten,” DGaO Proceedings, 2020.
    6. S. Schmidt et al., “Tailored micro-optical freeform holograms for integrated complex beam shaping,” Optica, vol. 7, Art. no. 10, Oct. 2020, doi: 10.1364/OPTICA.395177.
    7. S. Thiele, A. Toulouse, S. Ristok, H. Giessen, and A. Herkommer, “Translating optical design freedom into 3D printed complex micro-optics (Conference Presentation),” in 3D Printed Optics and Additive Photonic Manufacturing II, A. M. Herkommer, G. von Freymann, and M. Flury, Eds., SPIE, 2020, p. 1134904. doi: 10.1117/12.2559198.
  5. 2019

    1. J. Drozella, A. Toulouse, S. Thiele, and A. M. Herkommer, “Fast and comfortable GPU-accelerated wave-optical simulation for imaging properties and design of highly aspheric 3D-printed freeform microlens systems,” in Novel Optical Systems, Methods, and Applications XXII, C. F. Hahlweg and J. R. Mulley, Eds., SPIE, 2019, p. 1110506. doi: 10.1117/12.2528843.
    2. A. Toulouse, S. Thiele, and A. Herkommer, “Virtual reality headset using a gaze-synchronized display system,” in Optical Design Challenge 2019, B. C. Kress, Ed., SPIE, 2019, p. 1104009. doi: 10.1117/12.2523920.
  6. 2018

    1. J. Drozella, K. Frenner, and W. Osten, “GPU-accelerated simulation of the superresolution capabilities of dielectric microspheres using the Differential Method,” in Optical Micro- and Nanometrology VII, C. Gorecki, A. K. Asundi, and W. Osten, Eds., SPIE, 2018, p. 106780N. doi: 10.1117/12.2306435.
    2. A. Hartung, S. Thiele, J. Drozella, H. Giessen, and A. Herkommer, “Schwärzen von 3D-gedruckten Mikrooptiken mittels Inkjet-Verfahren,” DGaO Proceedings, 2018.
    3. F. Rothermel, C. Pruß, A. Herkommer, and W. Osten, “In-Prozess Messtechnik für 3D-gedruckte Optiken,” DGaO Proceedings, 2018.
    4. S. Thiele, H. Giessen, T. Gissibl, K. Arzenbacher, and A. Herkommer, “Method of fabricating a multi-aperture system for foveated imaging and corresponding multi-aperture system,” Apr. 2018 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=WO002018072806A1
    5. A. Toulouse, S. Thiele, H. Giessen, and A. Herkommer, “Alignment-free integration of apertures and non-transparent hulls into 3D-printed micro-optics,” Opt. Lett., vol. 43, Art. no. 5283, 2018, doi: doi.org/10.1364/OL.43.005283.
  7. 2017

    1. B. Chen and A. Herkommer, “Alternate optical designs for head-mounted displays with a wide field of view,” Applied Optics, vol. 56, Art. no. 4, Feb. 2017, doi: 10.1364/AO.56.000901.
    2. S. Fischbach et al., “Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source,” ACS PHOTONICS, vol. 4, Art. no. 6, Jun. 2017, doi: 10.1021/acsphotonics.7b00253.
    3. F. Grimm and A. Herkommer, “Zweistufiges Konzentratorsystem für einen Paraboloidkollektor,” Feb. 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102014008794B4&famSearchFromHitlist=1
    4. F. Grimm and A. Herkommer, “Parabolrinnenkollektor mit einem Sekundärkonzentrator und einem Empfängerelement,” Feb. 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102014006985B4&famSearchFromHitlist=1
    5. K. Körner, S. Thiele, and A. Herkommer, “Anordnung und Verfahren zur Raman-Spektroskopie, insbesondere auch zur Tumorgewebe- und Aorta-Diagnostik,” Sep. 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102016003334A1&famSearchFromHitlist=1
    6. D. Rausch, M. Rommel, A. Herkommer, and T. Talpur, “Illumination design for extended sources based on phase space mapping,” OPTICAL ENGINEERING, vol. 56, Art. no. 6, Jun. 2017, doi: 10.1117/1.OE.56.6.065103.
    7. S. Schmidt, S. Thiele, A. Herkommer, A. Tuennermann, and H. Gross, “Rotationally symmetric formulation of the wave propagation method-application to the straylight analysis of diffractive lenses,” OPTICS LETTERS, vol. 42, Art. no. 8, Apr. 2017, doi: 10.1364/OL.42.001612.
    8. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. Herkommer, “3D-printed eagle eye: Compound microlens system for foveated imaging,” Science Advances, vol. 3, p. e1602655, Feb. 2017, doi: 10.1126/sciadv.1602655.
    9. S. Thiele, H. Giessen, T. Gissibl, and A. Herkommer, “Verfahren und Vorrichtung zur Herstellung eines optischen Elements mit zumindest einem funktionalen Bereich, sowie Verwendung der Vorrichtung,” May 2017 [Online]. Available: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=EP000003162549A1&famSearchFromHitlist=1
    10. K. Weber, F. Hütt, S. Thiele, T. Gissibl, A. Herkommer, and H. Giessen, “Single mode fiber based delivery of OAM light by 3D direct laser writing,” Opt. Express, vol. 25, Art. no. 17, Aug. 2017, doi: 10.1364/OE.25.019672.
  8. 2016

    1. M. Blattmann et al., “Bimodal endoscopic probe combining white-light microscopy and optical coherence tomography,” APPLIED OPTICS, vol. 55, Art. no. 15, May 2016, doi: 10.1364/AO.55.004261.
    2. B. Chen and A. Herkommer, “Generalized Aldis theorem for calculating aberration contributions in freeform systems,” OPTICS EXPRESS, vol. 24, Art. no. 23, Nov. 2016, doi: 10.1364/OE.24.026999.
    3. B. Chen and A. Herkommer, “High order surface aberration contributions from phase space analysis of differential rays,” OPTICS EXPRESS, vol. 24, Art. no. 6, Mar. 2016, doi: 10.1364/OE.24.005934.
    4. W. Fuhl et al., “Non-intrusive practitioner pupil detection for unmodified microscope oculars,” COMPUTERS IN BIOLOGY AND MEDICINE, vol. 79, pp. 36–44, Dec. 2016, doi: 10.1016/j.compbiomed.2016.10.005.
    5. H. Gießen, T. Gissibl, S. Thiele, and A. Herkommer, “Das kleinste Endoskop der Welt per 3D-Druck,” vol. 47, Art. no. 5, 2016, doi: 10.1002/piuz.201690083.
    6. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” NATURE COMMUNICATIONS, vol. 7, Jun. 2016, doi: 10.1038/ncomms11763.
    7. T. Gissibl, S. Thiele, A. Herkommer, and H. Gießen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” NATURE PHOTONICS, vol. 10, Art. no. 8, Aug. 2016, doi: 10.1038/NPHOTON.2016.121.
    8. T. Talpur and A. Herkommer, “Review of freeform TIR collimator design methods,” Advanced Optical Technologies, vol. 5, Jan. 2016, doi: 10.1515/aot-2016-0003.
    9. S. Thiele et al., “Design, simulation and 3D printing of complex micro-optics for imaging,” 2016 International Conference on Optical MEMS and Nanophotonics (OMN), pp. 1–2, Jul. 2016, doi: 10.1109/OMN.2016.7565887.
    10. S. Thiele, T. Gissibl, H. Gießen, and A. M. Herkommer, “Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing,” OPTICS LETTERS, vol. 41, Art. no. 13, Jul. 2016, doi: 10.1364/OL.41.003029.
  9. 2015

    1. H. Suhr and A. M. Herkommer, “In situ microscopy using adjustment-free optics,” JOURNAL OF BIOMEDICAL OPTICS, vol. 20, Art. no. 11, Nov. 2015, doi: 10.1117/1.JBO.20.11.116007.
  10. 2014

    1. A. M. Herkommer, “Phase space optics: an alternate approach to freeform optical systems,” 2014.
    2. A. M. Herkommer, “Advances in the design of freeform systems for imaging and illumination applications,” Journal of Optics, vol. 43, Art. no. 4, Dec. 2014, doi: 10.1007/s12596-014-0224-7.
    3. S. Thiele, A. Seifert, and A. Herkommer, “Wave-optical design of a combined refractive-diffractive varifocal lens,” Optics Express, vol. 22, Art. no. 11, 2014.

Gruppenleiterin

Dieses Bild zeigt Andrea Toulouse

Andrea Toulouse

Dr.

Gruppenleiterin 3D-gedruckte Mikrooptik und Simulation

Zum Seitenanfang